首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present local least squares and regularization frameworks for computing 3D velocity (3D optical flow) from 3D radial velocity measured by a Doppler radar. We demonstrate the performance of our algorithms quantitatively on synthetic radial velocity data and qualitatively on real radial velocity data, obtained from the Doppler radar at Kurnell Radar station, Botany Bay, New South Wales, Australia. Radial velocity can be used to predict the future positions of storms in sequences of Doppler radar datasets.© 2005 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 15, 189–198, 2005  相似文献   

2.
针对3D打印技术打印速度慢、打印精度低、不能多色打印等缺陷,研究3D打印机的STL文件载入和读取、基于OpenGL的模型显示、彩色图片像素采集以及基于RGB颜色空间的数据处理算法等技术,以便将数据转化成相应的G代码发送给下位机.  相似文献   

3.
4.
A detailed investigation of the failure mechanisms for angle-interlocked (AI) and modified layer-to-layer (MLL) three dimensional (3D) woven composites under tension–tension (T–T) fatigue loading has been conducted using surface optical microscopy, cross-sectional SEM imaging, and non-destructive X-ray computed tomography (CT). X-ray microCT has revealed how cracks including surface matrix cracks, transverse matrix cracks, fibre/matrix interfacial debonding or delamination develop, and has delineated the complex 3D morphology of these cracks in relation to fibre architecture. For both weaves examined, transverse cracks soon become uniformly distributed in the weft yarns. A higher crack density was found in the AI composite than the MLL composite. Transverse cracking initiates in the fibre rich regions of weft yarns rather than the resin rich regions. Delaminations in the failed MLL specimen were more extensive than the AI specimen. It is suggested that for the MLL composite that debonding between the binder yarns and surrounding material is the predominant damage mechanism.  相似文献   

5.
In this paper, the boundary integrals for treating 3D field problems are fully regularized for planar elements by the technique of integration by parts (IBP). As has been well documented in open literatures, these integrals appear to be strongly singular and hyper-singular for the associated fundamental solutions. In the past, the IBP approach has only been applied to regularize the integrals for 2D problems. The present work shows that the IBP can also be further extended to treat 3D problems, where two variables of the local coordinates are involved. The presented formulations are fully explicit and also, most importantly, very straightforward for implementation in program codes. To demonstrate their validity and our implementation, a few example cases of 3D anisotropic heat conduction are investigated by the boundary element method and the calculated results are verified using analyses by ANSYS.  相似文献   

6.
D3S 技术     
D3S技术是在系列图像分析基础上发展形成的多学科的边缘前沿技术,已经广泛地应用于气象观测、作物识别、医疗诊断、自动化和机器人导航等领域,近年又在目标识别、参数测量、寻的跟踪、交会对接和三维高觉等高技术应用领域取得了很多突破性的研究成果,并在地质数据分析和侦察等方面显示出重要应用前景。本文分析总结了D3S技术近10年来的发展趋势和特点。  相似文献   

7.
Ideally, many materials should have a “knob” that allows for changing its properties at will, including the possibility to flip the sign of its behavior. This “knob” could be used to continuously tune the properties or in the sense of a digital switch. Such extreme level of stimulus–responsiveness has come into reach with recently increased possibilities of manufacturing complex rationally designed artificial materials called metamaterials on the micrometer scale. Here, we present mechanical metamaterials composed of liquid–crystal elastomers, whose director field is arranged into a designed complex three-dimensional (3D) pattern during the 3D laser printing process. External light from a blue LED, with intensities in the range of 10–30 W/cm2, serves as the stimulus. In the first example, we repeatedly flip the sign of the Poisson’s ratio of an achiral architecture within classical elasticity. In the second example, we flip the sign of the twist per strain in a chiral metamaterial beyond classical elasticity. The presented examples overcome major limitations in responsive mechanical metamaterials and we foresee many possible three-dimensional responsive micro-architectures manufactured along these lines.  相似文献   

8.
Iizuka K 《Applied optics》2012,51(6):763-770
When using stereographic image pairs to create three-dimensional (3D) images, a deep depth of field in the original scene enhances the depth perception in the 3D image. The omnifocus video camera has no depth of field limitations and produces images that are in focus throughout. By installing an attachment on the omnifocus video camera, real-time super deep stereoscopic pairs of video images were obtained. The deeper depth of field creates a larger perspective image shift, which makes greater demands on the binocular fusion of human vision. A means of reducing the perspective shift without harming the depth of field was found.  相似文献   

9.
提出了一种利用ObjectARX技术进行三维重构的方法。通过对工程三视图中各种二维图形特征的分类和提取,进行二维视图特征的匹配,以投影模式库为基础求得与之对应的三维基本体素。然后按一定规则将这些基本体素通过各种布尔运算及坐标变换最终形成三维实体,最后在AutoCAD上开发了一个重建系统。在算法的具体实现过程中采用了新颖的二维特征识别方法及匹配方法,比较成功的完成了一定范围内的三维实体的重建。  相似文献   

10.
11.
12.
温银堂  高亭亭  张玉燕 《计量学报》2020,41(9):1077-1081
针对3D打印的复杂点阵结构容易出现裂纹、未熔合或孔洞等缺陷,严重影响结构件的功能性能问题,开展了对3D打印的一种复杂点阵结构件的缺陷三维可视化检测方法研究。基于CT图像中结构件内部缺陷的灰度值差异特征,采用集合灰度值法自动识别一类缺陷并分割提取,由光线投射法对分割得到的缺陷序列图像进行三维重构。实验结果表明:所提方法有效获得了点阵结构件内部一种典型缺陷的三维可视图,从三维角度可对缺陷的形状、大小等形貌细节信息进行描述,为进一步分析缺陷对结构性能的影响提供了有力的依据。  相似文献   

13.
In order to simulate the mechanical behavior of large structures assembled from thin composite panels, we propose a coupling technique, which substitutes local 3D models for the global plate model in the critical zones where plate modeling is inadequate. The transition from 3D to 2D is based on stress and displacement distributions associated with Saint‐Venant problems, which are precalculated automatically for a simple 3D cell. The hybrid plate/3D model is obtained after convergence of a series of iterations between a global plate model of the structure and localized 3D models of the critical zones. This technique is nonintrusive because the global calculations can be carried out using commercial software. Evaluation tests show that convergence is fast and that the resulting hybrid model is very close to a full 3D model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Dirac semimetal is an emerging class of quantum matters, ranging from 2D category, such as, graphene and surface states of topological insulator to 3D category, for instance, Cd3As2 and Na3Bi. As 3D Dirac semimetals typically possess Fermi‐arc surface states, the 2D–3D Dirac van der Waals heterostructures should be promising for future electronics. Here, graphene–Cd3As2 heterostructures are fabricated through direct layer‐by‐layer stacking. The electronic coupling results in a notable interlayer charge transfer, which enables us to modulate the Fermi level of graphene through Cd3As2. A planar graphene p–n–p junction is achieved by selective modification, which demonstrates quantized conductance plateaus. Moreover, compared with the bare graphene device, the graphene–Cd3As2 hybrid device presents large nonlocal signals near the Dirac point due to the charge transfer from the spin‐polarized surface states in the adjacent Cd3As2. The results enrich the family of van der Waals heterostructure and should inspire more studies on the application of Dirac/Weyl semimetals in spintronics.  相似文献   

15.
3D打印发展背景下三维建模软件变革趋势分析   总被引:1,自引:1,他引:0  
尹虎 《包装工程》2017,38(6):182-186
目的作为3D打印重要的辅助工具,现有三维建模软件针对专业用户开发设计,并不适用于普通用户。分析三维建模软件的变革趋势,目的在于让普通用户更方便地使用3D打印设备。方法采用实例分析方法,对具有代表性的三维建模软件进行分析。结论提出面向普通用户的三维建模软件开发思路,包括操作界面图形符号化、信息架构扁平化、建模功能智能化以及基于浏览器的三维建模软件服务平台。  相似文献   

16.
Metamaterials have unprecedented properties that facilitate the development of advanced devices and machines. However, their interconnected building structures limit their applications, especially in the fields that require large deformation, rich programmability and efficient shape‐reconfigurability. To break this limit and exploit more potentialities of metamaterials, an innovative material design strategy is proposed, named mechanical pixel (MP) array design. Similar to a screen that displays images by adjusting the colors of pixels, the metamaterials can form and reconfigure 3D morphologies by tuning the heights (lengths) of the MPs in the array. The strategy is demonstrated in a multistable metamaterial by experimental tests, theoretical analysis, and numerical simulations. Using this strategy, a large macroscopic shear deformation is obtained, and remarkable enhancements in the mechanical programmability, shape‐reconfigurability and adaptability, and reusable shock‐resistance are exhibited. Moreover, mechanical design and property prediction for the metamaterials are both greatly simplified due to the pixelated design. For a piece of the 3D pixel metamaterial with m n‐unit MPs, the number of programmable displacement–force curves increases from n+1 to 2m?n+1, and the number of stable morphologies grows from n+1 to at least (n+1)m. This strategy can be used to enhance the merits and further excavate the potential of versatile metamaterials.  相似文献   

17.
Web3D引擎中三维图形对象拾取的算法与实现   总被引:1,自引:0,他引:1  
应用Web3D引擎开发的计算机仿真系统和虚拟现实系统均需在Web浏览器上运行,需要其能快速下载和运行,因而要求尽可能提高Web3D引擎包括拾取功能在内的计算效率。在算法上提出了射线的分层次求交,先采用包围盒算法来实现对选择对象的快速拾取;为优化拾取的精度,再用三角形算法来实现准确拾取。在提出算法的基础上,用JAVA语言实现了在开源Web3D引擎上对所选图形对象拾取功能的开发。  相似文献   

18.
As competing with the established silicon technology, organic–inorganic metal halide perovskites are continually gaining ground in optoelectronics due to their excellent material properties and low‐cost production. The ability to have control over their shape, as well as composition and crystallinity, is indispensable for practical materialization. Many sophisticated nanofabrication methods have been devised to shape perovskites; however, they are still limited to in‐plane, low‐aspect‐ratio, and simple forms. This is in stark contrast with the demands of modern optoelectronics with freeform circuitry and high integration density. Here, a nanoprecision 3D printing is developed for organic–inorganic metal halide perovskites. The method is based on guiding evaporation‐induced perovskite crystallization in mid‐air using a femtoliter ink meniscus formed on a nanopipette, resulting in freestanding 3D perovskite nanostructures with a preferred crystal orientation. Stretching the ink meniscus with a pulling process enables on‐demand control of the nanostructure's diameter and hollowness, leading to an unprecedented tubular‐solid transition. With varying the pulling direction, a layer‐by‐layer stacking of perovskite nanostructures is successfully demonstrated with programmed shapes and positions, a primary step for additive manufacturing. It is expected that the method has the potential to create freeform perovskite nanostructures for customized optoelectronics.  相似文献   

19.
Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices.  相似文献   

20.
血管的三维重建   总被引:2,自引:0,他引:2  
对血管的三维重建问题,我们假定血管为等径管道,通过分析其几何特性,给出了确定其管道中轴线和半径的数学模型--搜索每个切片截面,求最大内切圆,该内切圆圆心即为切片截面与管道中轴线的交点,该内切圆半径即为管道半径,再通过拟合各个交点求出轴心线. 本模型中,我们确立了两种有效的误差分析方法;并由此发现由于中轴线与切片交角过小会使结果产生较大偏差.为解决此问题,我们从其它方向重新对血管进行切割,再进行处理求解,得到更加精确的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号