首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以双酚A环氧树脂E51为基质原料,甲基四氢苯酐为固化剂,K25空心玻璃微珠为轻质填充物,采用模压成形的方法制备了空心玻璃微珠填充固体浮力材料。研究了玻璃微珠的填充率对体系粘度、浮力材料的密度、抗压强度及耐静水压性能的影响。结果表明,低密度空心微珠的引入,有效降低了固体浮力材料的密度,并且随着玻璃微珠填充量的增大,材料的理论计算密度与实际密度的偏差逐渐变大;浮力材料的单轴压缩强度和耐静水压强度随着空心玻璃微珠填充量的增大而降低,当玻璃微珠填充量超过18%时,材料性能下降幅度增大。  相似文献   

2.
以环氧树脂E-4221为基质原料,十二烯基琥珀酸酐和甲基四氢苯酐为固化剂,以牌号为K20和HGS8000X两种空心玻璃微珠为轻质填充物,采用模压成型的方法制备了具有不同空心玻璃微珠配比的固体浮力材料。研究了玻璃微珠的配比对浮力材料的密度、抗压强度、吸水率及耐静水压性能的影响。结果表明,低密度空心微珠的引入,有效降低了固体浮力材料的密度;混合微珠填充更有利于固体浮力材料密度的降低;两种不同微珠相互配合可以得到适用于不同深度的高性能固体浮力材料。  相似文献   

3.
选用缩水甘油醚型环氧树脂、芳香族多胺固化剂和空心玻璃微珠等原材料制备了低密度、高强度的全海深浮力材料,研究了低密度空心玻璃微珠K1的加入量对浮力材料的密度、单轴压缩强度、耐静水压强度和吸水率等性能的影响。结果表明,在空心玻璃微珠总体积分数为66.7%的全海深浮力材料中,加入适量空心玻璃微珠K1取代空心玻璃微珠HM42,能够降低全海深浮力材料的密度,浮力材料的单轴压缩强度不低于132 MPa,耐静水压强度不低于150 MPa,吸水率不高于0.2%。制备的全海深浮力材料有望满足全海深设备的安全使用。   相似文献   

4.
建立了固体浮力材料胶液粘度、密度、压缩强度和弹性模量的解析法计算模型,分析了空心玻璃微珠(HGB)对固体浮力材料胶液粘度、密度、压缩强度、弹性模量和吸水率的影响。结果表明,粒径较大的空心玻璃微珠胶液粘度相对略低;空心玻璃微珠的体积分数固定时,固体浮力材料密度随着微珠密度的升高而升高,压缩强度随微珠强度的升高而升高,弹性模量随微珠模量的升高而升高;同一静水压下,固体浮力材料的吸水率随微珠强度的升高而减小。  相似文献   

5.
通过空心玻璃微珠(HGB)的体积分数、粒径、偶联剂改性等系列实验,总结分析了空心玻璃微珠对阻尼固体浮力材料力学性能的影响。结果表明,随着空心玻璃微珠体积分数的增加,浮力材料的吸水率逐渐增大,而密度、压缩强度和阻尼损耗因子逐渐降低;随着空心玻璃微珠粒径的增大,浮力材料的吸水率和阻尼损耗因子逐渐增加,而密度、压缩强度逐渐减小;添加偶联剂可有效改善空心玻璃微珠与环氧树脂的界面结合性,提高浮力材料的性能。   相似文献   

6.
以环氧树脂为基体,空心玻璃微珠为填充材料制备了具有高强度、低密度的复合泡沫材料。系统研究了固化剂用量,空心玻璃微珠的填充量、偶联剂的用量等对复合泡沫材料的力学性能的影响,并采用扫描电镜分析了复合泡沫材料的断口形貌。研究表明:随着空心玻璃微珠填充量的增大,复合泡沫材料的压缩强度和密度逐渐降低;偶联剂的加入能有效地改善环氧树脂与空心玻璃微珠之间的界面作用,从而提高力学性能。  相似文献   

7.
以牌号为HGS8000X的空心玻璃微珠为填充材料,以环氧树脂为基体,采用真空辅助模压成型法制备了空心玻璃微珠体积添加量为65%—70%的复合泡沫材料。研究了空心玻璃微珠的体积分数对材料的密度、压缩强度、吸水率以及耐静水压性能的影响。结果表明,当空心玻璃微珠体积分数为67%—69%时,材料综合性能性能最佳,可以保持50 MPa、24 h的吸水率小于1%和压缩强度大于80 MPa的情况下使材料的密度由0.65 g/cm3降低到0.60 g/cm3。分析指出,高微珠含量的复合泡沫材料的性能更大程度上依赖于由于环氧树脂缺失而导致的材料的显微结构和空心玻璃微珠受力状态的改变。  相似文献   

8.
用双酚A型环氧树脂、环氧稀释剂、酸酐固化剂及改性空心玻璃微珠,采用真空复合浇注工艺,制备出了超低密度、高强度的全海深固体浮力材料。通过密度测试、耐全方位静水压测试和力学性能测试等手段对浮力材料进行了表征。结果表明:制备的全海深浮力材料密度为0.638g/cm3,116MPa、24h全方位静水压下的吸水率为0.125%,单轴压缩强度为105.2MPa,剪切强度为35.7MPa,拉伸强度为33.4MPa,破坏强度141MPa,综合性能优异,已成功应用到上海交通大学研制的全海深无人潜水器上。  相似文献   

9.
为探究空心微珠填充量对树脂基深水浮力材料压缩性能的影响以及材料压缩破坏机理,基于Mori-Tanaka及Turesanyi方法对空心微珠填充环氧树脂基深水浮力材料的有效弹性模量及压缩强度进行了理论预测.制备了空心微珠填充环氧树脂基深水浮力材料,对不同空心微珠填充比的材料体系进行了单轴压缩试验,并通过扫描电镜观察了材料断裂面微观形貌.结果表明:随着空心微珠填充量增加,材料体系耐压强度降低,模量上升,且实验结果与理论预测吻合情况较好;空心微珠破损是深水浮力材料破坏的根本因素.  相似文献   

10.
以环氧树脂为基体,空心玻璃微珠为填充物制备得到轻质高压浮力材料。采用排水法计算浮力材料的密度,变容深海耐压模拟试验装置测试了浮力材料在高压环境下的吸水率。结果表明:随着空心玻璃微珠含量的增加,浮力材料的密度下降,同一静水压下浮力材料吸水率先缓慢增加后急速升高;不同静水压条件下,材料的吸水率在40MPa以下基本不变,高于40MPa时,材料的吸水率急剧升高。  相似文献   

11.
以牌号为HGS8000X的空心玻璃微珠(HGM)为填料,以液体硅橡胶(SR)为基体,采用真空辅助浇铸法和模压法制备柔性浮力材料,并研究空心玻璃微珠体积分数对柔性浮力材料的密度、拉伸性能、硬度和吸水率的影响。结果表明,所制备的柔性浮力材料的密度为0.6~0.8 g/cm3,在40 MPa水静压下2 h吸水率最大不超过0.25%,是良好的深海用柔性浮力材料;随着空心玻璃微珠添加量的增加,柔性浮力材料的密度降低,吸水率增加,弹性降低,硬度提高。  相似文献   

12.
环氧树脂基固体浮力材料的制备及性能研究   总被引:1,自引:0,他引:1  
实验采用低密度空心玻璃微珠(HGMS)填充脂环族环氧树脂E-4221制备固体浮力材料。讨论了环氧树脂E-4221体系的固化工艺制度和树脂体系配方对固化环氧树脂材料强度的影响,测得固化树脂产物压缩强度范围值100~150 MPa。分析了树脂配方以及玻璃微珠体积含量对最终固体浮力材料性能的影响,通过优化条件制备出抗压强度在40~70 MPa之间,密度范围在0.5~0.7 g/cm3,吸水率低于0.2%的固体浮力材料,最后对浮力材料的压缩断面做了简要分析。  相似文献   

13.
借鉴陶瓷材料模压成型工艺提出了适用于环氧树脂基固体浮力材料制备的真空辅助模压成型自由固化方法,实现了固体浮力材料制备过程中成型与固化环节的分离,为高性能固体浮力材料的制备提供了新方法。以环氧树脂(E-4221)为基体,空心玻璃微珠(Hollow glass microsphere, HGMS)做填充材料,采用模压成型自由固化方法制备高HGMS体积分数的HGMS/E-4221固体浮力材料,研究了HGMS体积分数、成型压力对HGMS/E-4221固体浮力材料密度、抗压强度、吸水率等性能的影响。结果表明,真空辅助模压成型自由固化方法适用于HGMS体积分数为65%~67%的HGMS/E-4221固体浮力材料制备,所获得的HGMS/E-4221固体浮力材料密度为0.621~0.655 g/cm3,适用深度可达到8 000~10 000 m。   相似文献   

14.
以环氧树脂为基体, 经硅烷活化处理的空心玻璃微珠(HGM)为填充剂, 制备了高强浮力材料。采用XRD、 FRIR分析了HGM的结构和硅烷处理效果, 通过密度测试和单轴静态压缩试验研究了HGM的类型和含量对浮力材料性能的影响, 利用SEM和吸水率试验研究了浮力材料的断裂特性和吸水性。结果表明: HGM为无定形结构; 硅烷分子接枝在HGM表面, 使得HGM与环氧树脂完好结合且两者界面没有间隙沟槽; HGM的较大比压缩强度有利于提高浮力材料的性能; 高强浮力材料密度为0.645~0.850 g/cm3, 抗压强度为60~93 MPa, 比压缩强度为92~112 MPa·cm3·g-1; HGM含量较少时, 浮力材料断裂表面HGM破裂处的基体环氧树脂有拖尾特征, HGM含量增多时, HGM的破坏程度不断增大直至完全破坏; 浮力材料具有较好的抗吸水性。   相似文献   

15.
Composites consisting of bonded hollow glass microspheres are promising for constructions in which materials are needed that combine a high Young's modulus with a low density. The elastic properties of ideally bonded hollow glass microsphere composites are predicted theoretically. Heat-treated castings of quartz glass microspheres approach the theoretical Young's modulus from below. The best result achieved was a Young's modulus of about 1 GPa with a strength of about 0.8 MPa at a density of about 180 kg m–3. This was obtained with a casting of quartz glass microspheres, bonded with mono-aluminium phosphate. Composites made by pressing of appropriate microsphere/ binder mixtures, followed by heating, had a density that was lower than for castings but had a Young's modulus far below the theoretical value.  相似文献   

16.
本文详细分析了空心微球填充的树脂类材料的结构,讨论了轻质填充物(空心微球)的结构与力学性能,计算分析了空心微球的结构与性能对复合材料性能的影响。以普通玻璃微珠填充的环氧树脂材料为例,分析了玻璃微球填充的最大比例与可能得到的浮力材料的最高性能。总结了浮力材料的设计原则和和发展方向。  相似文献   

17.
以环氧树脂为基体, 不同粒径空心玻璃微球为填充体, 制备了轻质高强复合泡沫塑料。通过单轴准静态压缩试验研究了空心微球的粒径大小对复合泡沫塑料的抗压性能的影响, 并采用SEM对复合泡沫塑料的微观结构进行观测。通过随机空间分布法建立了空心玻璃微球/环氧树脂复合泡沫塑料的实体模型, 并且使用有限元分析软件对复合泡沫塑料在1 kPa载荷下的应力分布进行了分析。结果表明, 在相同体积含量下, 当空心微球的粒径从30 μm增大到120 μm时, 复合泡沫塑料的抗压强度无明显变化。有限元分析的结果表明, 在复合泡沫塑料中主要承载部分为空心微球, 空心微球上的应力大于树脂基体上的应力。最大应力分布在空心微球的内壁, 结合SEM图像可推测, 空心微球在破裂之前受到充分的挤压, 并且从内壁产生裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号