首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 172 毫秒
1.
以无机陶瓷纤维为增强体,与SiO2溶胶混合,经超临界干燥制备了SiO2气凝胶隔热复合材料,研究了SiO2溶胶配比对气凝胶及其复合材料微观结构和力学性能的影响。结果表明,随着SiO2溶胶中乙醇含量的增大,SiO2气凝胶的密度逐渐降低,平均孔径增大,气凝胶中含有的大孔、连孔数量增加,网络骨架结构强度降低。纤维与SiO2气凝胶复合后,气凝胶充满了纤维间的孔隙,形成较好的界面结合。当乙醇/正硅酸乙酯(EtOH/TEOS)摩尔比由2∶1增加到20∶1时,SiO2气凝胶基体传递载荷能力逐渐减弱,材料的力学性能逐渐降低,其拉伸强度、弯曲强度和压缩强度分别由1.9 MPa、2.7 MPa、1.73 MPa(10%应变)降低到0.17 MPa、0.12 MPa、0.04 MPa(10%应变)。  相似文献   

2.
通过溶胶-凝胶途径,将间苯二酚-甲醛预聚物和二氧化硅溶胶混合,在碱性溶液中制备出有机/无机杂化水凝胶.水凝胶经溶剂置换、超临界干燥、裂解和氢氟酸刻蚀制备得到炭气凝胶.采用氮气吸附法研究了水凝胶向炭气凝胶转化的结构演变规律.固定间苯二酚/甲醛摩尔比为0.5,二氧化硅溶胶浓度为15g/100mL,考察了二氧化硅胶体颗粒的尺寸及间苯二酚和甲醛浓度对炭气凝胶孔隙结构的影响.结果表明:无机二氧化硅溶胶骨架有效减少了有机物在超临界干燥和裂解过程中的体积收缩.中孔率随间苯二酚和甲醛浓度的升高而增加,孔隙率随二氧化硅溶胶粒子的增大而减小.当间苯二酚和甲醛质量分数之和的达到20%时,7nm二氧化硅溶胶体系的密度低达0.22g/cm3,中孔率达到96%,12nm二氧化硅溶胶体系的密度低达0.26g/cm3,中孔率达到98%.  相似文献   

3.
以间苯二酚(R)和甲醛(F)为炭前驱体原料, 通过溶胶-凝胶法制备石墨烯/炭气凝胶复合材料。采用XRD、Raman、SEM和N2吸附/脱附等对样品进行结构表征。结果表明: 石墨烯为R和F的聚合提供形核场所, R和F首先在氧化石墨烯(GO)表面聚合, 随着RF含量的增加, 复合炭气凝胶(RF)结构从石墨烯薄片层为骨架的三维网络, 经RF基炭球包裹于石墨烯的网络结构, 最终转变为球形团簇交联的三维网络。石墨烯/炭气凝胶复合材料的比表面积随着RF的增加先增大后减小。当GO与RF质量比为1︰100时, GO/RF-100用作超级电容器电极材料, 在6 mol/L KOH电解液中的比电容达169 F/g, 具有较好的电容特性。  相似文献   

4.
李琪  郭丽  李香兰 《功能材料》2023,(2):2231-2236
选择以T700碳纤维为增强相,将碳纤维经浓HNO3浸渍处理0,40,80,120和160 min后掺入到环氧树脂中,制备了碳纤维增强环氧树脂复合材料。分析了浸渍时间对复合材料微观形貌、力学性能和热稳定性的影响。结果表明,经浓HNO3浸渍的碳纤维表面粗糙度增大,沟槽数量和深度增加,碳纤维和环氧树脂的结合强度增大;随碳纤维浸渍时间的增大,复合材料的界面剪切强度、层间剪切强度、弯曲强度和弯曲模量均先增大后减小,当浸渍时间为120 min时,复合材料的界面剪切强度和层间剪切强度均达到了最大值,分别为80.2和90.3 MPa,其弯曲强度和弯曲模量也达到了最大值,分别为902.6 MPa和79.3 GPa,且应力-应变最高点增大,弯曲性能提高;在800℃下浓HNO3浸渍处理120 min的复合材料的残炭率最大为58.2%,热稳定性最佳。  相似文献   

5.
炭气凝胶电极电吸附脱盐性能的研究   总被引:1,自引:0,他引:1  
刘玲  庞自钊  孟庆函 《功能材料》2012,43(3):320-323
以间苯二酚和甲醛为原料,通过溶胶-凝胶反应、超临界干燥、炭化等工艺合成制备出炭气凝胶,对炭气凝胶的微观结构进行了表征,并研究了炭气凝胶电极在不同电压和在不同浓度NaCl溶液中的电吸附性能。实验结果表明炭气凝胶电极具有很高的吸附效率,在20min内基本达到吸附平衡。随着外加电压的加大,处理溶液浓度的升高,炭气凝胶电极吸附平衡时间减小,单位吸附量增加,吸附单元内电流增加。  相似文献   

6.
炭气凝胶及其有机气凝胶前驱体的吸附性能   总被引:1,自引:1,他引:1  
间苯二酚和糠醛的醇溶液在六次甲基四胺催化下经溶胶-凝胶过程合成醇凝胶,常压干燥后得到有机气凝胶,经炭化获得炭气凝胶.利用TEM和N2吸附表征了炭气凝胶及其有机气凝胶前驱体的结构,并通过有机蒸汽吸附实验研究了气凝胶的结构-吸附性能关系.实验结果表明:有机气凝胶和炭气凝胶对极性有机蒸汽的静态饱和吸附量高于对非极性有机蒸汽的静态饱和吸附量;提高热处理温度,有利于气凝胶对低浓度极性有机蒸汽和各种浓度非极性有机蒸汽的吸附,但不利于对高浓度极性有机蒸汽的吸附;随着有机蒸汽浓度的提高,气凝胶对极性有机蒸汽的吸附量明显增大,但对非极性有机蒸汽的吸附量影响不大,仅略微上升.此外,气凝胶的室温脱附率高达60 %~85 %.  相似文献   

7.
李威  叶卫平  程旭东  杨帆  崔俊平 《材料导报》2015,29(22):72-74, 95
以正硅酸乙酯(TEOS)为前驱体,复合纤维为增强相,采用溶胶-凝胶法和常压干燥技术制备了纤维增强疏水SiO_2气凝胶复合材料。利用傅里叶变换红外光谱仪、扫描电子显微镜、比表面积分析仪等手段对气凝胶的化学组成、形貌及结构等进行了分析,并且测量了样品的密度和抗折强度。结果表明:经常压干燥制备的SiO_2气凝胶复合材料加工成块性较好,密度在0.27g/cm~3左右,比表面积达到878.544m~2/g;随着复合纤维的掺入,凝胶填充了纤维之间的大部分微米空隙,并与纤维形成了比较密实的结构,复合材料的抗折强度提高到了1.53 MPa,使得材料有较好的韧性,适用于不规则形状的隔热。  相似文献   

8.
室温条件下乙腈为溶剂炭气凝胶的制备与机理分析   总被引:1,自引:0,他引:1  
与传统炭气凝胶制备不同,在室温条件下以乙腈为溶剂,间苯二酚和甲醛为前驱体,盐酸为催化剂,采用溶胶-凝胶、超临界干燥结合高温炭化工艺制备炭气凝胶(密度低至约50 mg.cm-3)。红外光谱、比表面积和孔径分布、扫描电子显微镜(SEM)和X射线衍射等测试表明,所制炭气凝胶是一种类石墨结构的非晶态材料,具有纳米骨架网络结构,比表面积达1 300 m2.g-1。对比不同配比气凝胶的SEM发现,气凝胶的颗粒尺寸为40 nm~70 nm。分析溶胶-凝胶过程中的温度变化和乙腈在凝胶化中作用得知,由于盐酸的催化和反应放热共同作用,实现了室温下间苯二酚和甲醛的加成和缩聚反应,并最终形成凝胶;乙腈在反应中起着一种分散剂的作用。  相似文献   

9.
以三聚氰胺、间苯二酚、甲醛为原料,采用溶胶-凝胶法、冷冻干燥等步骤制备出三聚氰胺-间苯二酚-甲醛(MR)干凝胶;并以所制炭气凝胶为载体浸渍硝酸钴,经氮气中高温炭化,得到钴复合氮掺杂的炭气凝胶。考察间苯二酚和三聚氰胺比例、凝胶pH值及炭化条件等对气凝胶结构和催化氧还原活性的影响,采用XRD、XPS、低温氮气吸脱附等方法研究催化剂的结构。随pH值增加,MR气凝胶的介孔分布向小孔移动;当M/R物质的量比为6∶1时,其介孔分布为3.0~4.0 nm。钴复合炭气凝胶多孔结构中存在均匀分布Co金属颗粒和管状炭,Co金属颗粒粒径随炭化温度升高而增加。采用旋转圆盘电极研究催化剂在0.5mol/L H2SO4溶液中的电化学性能,结果表明催化剂具有良好的氧还原活性。  相似文献   

10.
为制备低电阻率的尼龙66基复合材料,以碳纤维和镍粉(Ni)填充尼龙66制备碳纤维-Ni/尼龙66高导电复合材料。研究填料表面改性和含量对碳纤维-Ni/尼龙66复合材料导电性能和力学性能的影响。结果表明:KH550改性碳纤维和Ni有助于降低碳纤维-Ni/尼龙66复合材料的电阻率。碳纤维-Ni/尼龙66复合材料的电阻率随着碳纤维和Ni含量的增加而减小,且碳纤维和Ni填充尼龙66的导电逾渗阈值均为20wt%,此时制备的碳纤维-Ni/尼龙66复合材料的电阻率为455Ω·cm,熔融温度为202.2℃。碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度随着碳纤维或Ni含量的增加而先增大后减小。当Ni含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度在碳纤维含量分别为20wt%和10wt%时达到最大值,分别为98MPa和70 MPa;当碳纤维含量为20wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度则在Ni含量为30wt%和20wt%时达到最大值,分别为120 MPa和67 MPa。  相似文献   

11.
To overcome the brittleness and the pyrolysis shrinkage of carbon aerogels, carbon fiber reinforced composites were prepared by copyrolysis of polyacrylonitrile fiber reinforced resorcinol-formaldehyde aerogel composites (PAN/RFs). The PAN/RFs were obtained by impregnating the PAN fiber felt with RF sol and then supercritical drying. Upon carbonization the PAN fiber shrinks with the RF aerogel, thus reducing the shrinkage differences between the fiber and the aerogel, and results in crack-free carbon fiber reinforced carbon aerogel composites, with a thermal conductivity of 0.073 W/m K at 25 °C in air. Our new method may greatly expand the usage of carbon aerogels in general applications.  相似文献   

12.
Carbon fiber-reinforced carbon aerogel composites (C/CAs) for thermal insulators were prepared by copyrolysis of resorcinol-formaldehyde (RF) aerogels reinforced by oxidized polyacrylonitrile (PAN) fiber felts. The RF aerogel composites were obtained by impregnating PAN fiber felts with RF sols, then aging, ethanol exchanging, and drying at ambient pressure. Upon carbonization, the PAN fibers shrink with the RF aerogels, thus reducing the difference of shrinkage rates between the fiber reinforcements and the aerogel matrices, and resulting in C/CAs without any obvious cracks. The three point bend strength of the C/CAs is 7.1 ± 1.7 MPa, and the thermal conductivity is 0.328 W m(-1) K(-1) at 300 °C in air. These composites can be used as high-temperature thermal insulators (in inert atmospheres or vacuum) or supports for phase change materials in thermal protection system.  相似文献   

13.
Aramid fibers reinforced silica aerogel composites (AF/aerogels) for thermal insulation were prepared successfully under ambient pressure drying. The microstructure showed that the aramid fibers were inlaid in the aerogel matrix, acting as the supporting skeletons, to strengthen the aerogel matrix. FTIR revealed AF/aerogels was physical combination between aramid fibers and aerogel matrix without chemical bonds. The as prepared AF/aerogels possessed extremely low thermal conductivity of 0.0227 ± 0.0007 W m−1 K−1 with the fiber content ranging from 1.5% to 6.6%. Due to the softness, low density and remarkable mechanical strength of aramid fibers and the layered structure of the fiber distribution, the AF/aerogels presented nice elasticity and flexibility. TG–DSC indicated the thermal stability reaching approximately 290 °C, can meet the general usage conditions, which was mainly depended on the pure silica aerogels. From mentioned above, AF/aerogels present huge application prospects in heat preservation field, especially in piping insulation.  相似文献   

14.
烧结温度对Cf/SiC复合材料结构及性能的影响   总被引:1,自引:0,他引:1  
以碳纤维为增强体, 热压烧结制备了Cf/SiC复合材料, 研究了烧结温度对Cf/SiC复合材料密度、结构及性能的影响. 研究发现: 提高烧结温度能够促进Cf/SiC复合材料的致密度; 当烧结温度低于1850℃时, 升高烧结温度, 复合材料的强度和断裂韧性也随之提高. 当烧结温度为1850℃时, 复合材料的性能最优, 弯曲强度达500.1MPa, 断裂韧性为16.9MPa·m 1/2. 当烧结温度达到1880℃时, 复合材料性能反而下降.  相似文献   

15.
Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.  相似文献   

16.
碳纤维/树脂复合材料广泛应用于民用航空器结构中,在服役期间会受到复杂环境(湿热、腐蚀、复杂应力和电热作用等)的作用,低强度电流对碳纤维/树脂复合材料的影响受到的关注较少。以碳纤维/树脂复合材料为研究对象,根据碳纤维的温敏效应和通电时的电阻变化规律,计算出碳纤维单丝/环氧树脂复合试样的界面温度范围,之后采用拉曼光谱测试和单丝断裂实验研究了低强度电流对单丝复合体系界面应力和界面剪切强度的影响。结果表明:随着电流强度的提高,单丝复合体系的界面温度随之升高,电流为8 mA时,界面温度高达约200℃。随着电流强度的增大,单丝复合体系的界面压缩应力表现为先增大后减小的趋势,电流高于7 mA后,界面处树脂出现烧蚀降解破坏;单丝断裂实验结果表明随着电流强度增大,单丝复合体系的界面剪切强度呈现先升后降的趋势,在6 mA时界面剪切强度达到最大值62.39 MPa,而8 mA时界面剪切强度仅为34.95 MPa。   相似文献   

17.
以间苯二酚和甲醛为原料水热制备有机气凝胶,在碳化过程中使用KOH作活化剂制备出孔结构丰富的碳气凝胶。采用扫描电镜(SEM)、X射线衍射(XRD)及N2吸脱附法等手段对材料的结构及形貌表征,考察了活化剂用量、染料初始浓度、接触时间等因素对亚甲基蓝在碳气凝胶上吸附的影响,并进行了吸附类型和吸附动力学研究。结果表明:活化剂的加入使碳气凝胶材料的孔结构更加丰富,当活化剂与有机气凝胶的质量比达到2∶1时,其吸附性能最佳。碳气凝胶去除亚甲基蓝的吸附行为符合二级动力学模型。吸附类型为Langmuir吸附模型。  相似文献   

18.
通过设计圆弧边缘夹持方案和狗骨形拉伸试样,开展了陶瓷纤维增强SiO2气凝胶复合材料室温环境中的面内拉伸性能试验,采用数字图像相关方法对陶瓷纤维增强SiO2气凝胶复合材料表面的全场变形进行测量和分析,并结合获得的非均匀应变分布情况进一步讨论其力学行为特征和变形断裂机制。结果表明:纤维增强增韧机制使陶瓷纤维增强SiO2气凝胶复合材料的面内拉伸行为表现出一定的非线性及韧性特征;在一定载荷水平下,陶瓷纤维增强SiO2气凝胶复合材料表面应变分布呈显著的非均匀特征,与内部随机的纤维排布及各处传力情况不同相关,可选择较大计算区域进行平均化处理来减弱对测试中应变度量的影响;在加载和断裂过程中陶瓷纤维增强SiO2气凝胶复合材料表面存在局部应变集中现象,并随着裂纹扩展而发生演变,面内拉伸载荷下的宏观断口呈锯齿状特征,主要由剪应力主导的基体断裂、法向针刺对纤维铺层的约束等原因所致。本文研究结果为隔热复合材料的强韧化性能提高指明了方向。   相似文献   

19.
将玄武岩纤维置于混杂铺层的压缩侧,研究了碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料的弯曲性能及混杂比对其弯曲性能的影响。通过对试样进行三点弯曲试验得到了材料的弯曲性能,并通过扫描电子显微镜观察材料的失效模式。与纯碳纤维增强环氧树脂基复合材料相比,当混杂比为16.7%和33.3%时,混杂复合材料的弯曲强度明显提升,弯曲强度分别提高12.4%和15.2%,但是其弯曲模量随着混杂比的提升而降低。混杂后的材料及玄武岩纤维增强环氧树脂基复合材料的失效位移都高于碳纤维增强环氧树脂基复合材料,断裂韧性明显提升。从侧面观察可以发现不同铺层在压缩侧、拉伸侧和中间层有不同的失效形式。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号