首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
美国弗吉尼亚大学的研究人员宣布,他们开发出了可大幅提高氢储存能力的新材料,其储氢量最大可达到自身重量的14%,相当于目前储氢合金材料的2倍,同时,该技术采用在室温下储存氢的方式。氢是一种能源携带者,燃料电池就是以氢气为燃料将化学能转化为电能的发电装置,它是水的电解反应的反向过程,当氢与氧结合时,其产品就是电力、水和热量,并不会排放温室气体,因此,氢被当做替代化石燃料的新型绿色能源。但是,如果要让氢经济梦想成真,科学家们必须提高氢气生产和储存的效率。  相似文献   

2.
传统能源的短缺以及化石燃料直接燃烧后所产生的污染,促使人类必须探索新的可替代能源。氢气无毒、无污染、来源广泛,是第三次能源革命的重要媒介。工业制氢会产生CO、CO2等副产物,故而提升氢气浓度,剔除这些杂质,是制氢必不可缺的环节。混合导电氢分离膜具有高效的氢分离能力,是应用在该环节的最佳选择之一。BaCeO3是单相钙钛矿结构,在其“B”位掺杂后,质子导电能力提升,具备更佳的氢渗透性,但这类材料在湿润CO2气氛中化学稳定性较差。合理的掺入其他离子以及添加金属相,能有效改善材料的氢渗透率或化学稳定性。本工作使用溶胶凝胶法制备了BaCe0.7In0.1Ta0.1Y0.1O3-δ粉末材料,并与Ni粉混合共烧制备质子-电子混合导电金属陶瓷氢分离膜。通过XRD、SEM表征了样品的相结构和微观形貌,并测试了其电导率,氢渗透率,以及在湿润CO2环境中的短期稳定性。结果表明,In3+和Ta...  相似文献   

3.
利用可再生电力将化石能源利用过程中排放的CO2还原为增值含碳化学品,不仅可以解决CO2排放问题,还可以实现可再生能源存储,是实现我国“双碳”目标的重要途径.离子传导膜作为CO2电解池中的重要组成部分,一方面其离子电导率决定了电能到化学能的转化效率;另一方面对不同离子的选择性和渗透性极大地影响了阴极催化剂反应微环境,进而影响了CO2电催化还原性能和电极稳定性.本文总结了近些年包括室温离子交换膜、中高温耐热高分子膜和固体氧化物膜的不同离子传导膜在电催化CO2转化中的应用,介绍了不同离子传导膜对CO2还原反应、电极稳定性、产物收集等方面的影响,提出了不同离子传导膜在CO2电还原转化利用过程中存在的问题与挑战,并给出了相应解决策略,最后对未来离子膜在CO2电化学转化利用领域的研究进行了展望.  相似文献   

4.
预先在酵母菌模板表面沉积Co(OH)3, 经高温煅烧后成功制得Co3O4空心微球, 并作为前驱体催化NaBH4水解制氢。通过场发射扫描电镜(FE-SEM)和X射线衍射(XRD)进行样品的微观形貌和物相分析。研究结果表明, 当反应液中NaBH4含量为10wt%时, 模板法制备的Co3O4空心微球催化产氢速率高达2140 mL/(min•g) (25℃), 约是同等条件下无模板制备Co3O4活性的9倍, 且所制备的Co3O4空心微球长期储存性能良好。  相似文献   

5.
高密度储氢材料研究进展   总被引:2,自引:0,他引:2  
氢是一种清洁的燃料,氢能是未来有发展前景的新型能源之一.氢的储存是氢能现阶段开发和利用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种,其中高压气态储存或低温液态储存不能满足将来的储氢目标.固态储氢是通过化学或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氢气储存方式.高密度储氢材料由轻元素构成,包括铝氢化物、硼氢化物、氨基氢化物、氨硼烷等,理论储氢质量分数均达到5%以上.综述了高密度储氢材料的研究进展,认为高储氢容量、近室温操作、可控吸/放氢、长寿命的轻质氢化物材料有希望达到燃料电池和移动氢源应用的目标.  相似文献   

6.
氢气因清洁和可再生等优点,被认为是一种具有发展前景的清洁能源,在未来替代传统化石燃料的可再生能源体系中具有重要地位。电化学分解水是一种高效且环境友好的制氢途径,在电解水制氢技术的发展中,高效电催化析氢催化剂的作用显得尤为重要。二硫化钼(MoS2)具有较低的析氢吉布斯自由能及耐酸碱腐蚀等优点,因此,MoS2作为高效的电催化析氢催化剂一直是研究热点。阐述了MoS2的电催化析氢机理,综述了不同形貌MoS2在电催化析氢中的应用,通过对MoS2电催化剂进行改性来优化其催化活性。研究表明通过改善MoS2边缘位点的催化活性、增加活性位点的数量等方法能够极大地改善MoS2电化学析氢过程中的催化活性。  相似文献   

7.
<正>氢能源是一种新型无污染的清洁能源,但如何实现安全而经济的储存运输是关键技术之一。金属氢化物储氢装置将储氢合金(一般为AB5型、AB2型、AB型、镁系的储氢材料)以一定的方式装填到容器内,利用储氢合金的可逆吸放氢能力,达到储存、净化氢气的目的。与高压气态储氢相比,金属氢化物储氢是一种固态储氢技术,具有储氢压  相似文献   

8.
以阳离子PS微球为模板, 钛酸四丁酯为钛源, 氨水为催化剂制备中空TiO2微球, 通过物理共混法将中空TiO2微球引入到聚丙烯酸酯薄膜中, 考察了中空TiO2微球的空心粒径及用量对复合薄膜光反射性、导热系数及力学性能的影响。结果表明: 中空TiO2微球的引入可显著提升聚丙烯酸酯薄膜的各项性能, 中空TiO2微球的空心粒径和用量对复合薄膜的性能有不同程度的影响, 随着中空TiO2微球空心粒径和用量的增加, 复合薄膜的性能基本呈现先提升后降低的趋势, 其中当中空TiO2微球空心粒径为300 nm、用量为1%时, 所制备的复合薄膜保温性能和力学性能最优。  相似文献   

9.
CO2绿色转化     
<正>全球工业化水平的持续提升加速了煤、石油、天然气等化石燃料的消耗,大量二氧化碳(CO2)被排放进大气,导致全球变暖和生态失衡,削减CO2排放、将CO2资源化成为亟需解决的问题。2010年前后,美国、欧洲、日本相继开启以"人工光合成"为题的国家级科研项目,投入经费均在1亿美元以上。2011年起,我国国家自然科学基金委、科技部相继资助了相关项目。2020年9月,我国政府进一步提出力争在2030年前实现"碳达峰"、2060年前实现"碳中和"的目标。  相似文献   

10.
通过溶胶-凝胶法制备未掺杂和铕掺杂的TiO2空心微球, 采用XRD、SEM、TEM、HRTEM、BET和XPS等技术对样品进行表征, 以亚甲基蓝的光催化降解为目标反应, 评价其光催化活性。结果表明, 钛酸四丁酯(TBOT)的加入量对微球的形貌影响较大, 当滴加1.5 mL的TBOT时, 可得结构清晰、分散性良好的TiO2空心微球。XRD分析表明, 400℃煅烧的纳米TiO2空心微球为锐钛矿, 掺铕可抑制TiO2的晶相转变。光催化实验表明, 铕掺杂能显著提高TiO2空心微球的活性。当铕掺量为0.7%时, 所得样品粒径和孔径最小, 比表面积最大, 光催化活性最高。  相似文献   

11.
以分散聚合法制备的聚苯乙烯(PS)微球为有机模板, 以正硅酸四乙酯(C8H20O4Si)为无机前躯体物料, 通过静电吸附作用成功地制备了纳米 PS-SiO2 复合微球和SiO2单分散空心结构。通过红外(FTIR)、热重(TG)、透射电镜(TEM)、扫描电镜(SEM) 和热重分析仪(TGA)等手段对纳米复合材料进行了表征, 并对产物的抗磨性能进行了测试。结果表明, 该方法可一次性制备大量的复合微球, 这些微球的直径约为0.7 μm, 分散性能良好。在煅烧去除模板后, 得到了保持完整的空心纳米 SiO2 结构, 微球的球壳稳定性较好。摩擦实验表明, 添加了2 wt%空心微球的植物油在较低载荷工况下具有优异的减磨性能, 摩擦系数可低至0.058。   相似文献   

12.
随着可再生能源发电在电网中占比逐年增加,越来越多的燃煤机组参与灵活性发电。为了弄清灵活性发电燃煤机组的大气排放特性,以某亚临界600 MW和300 MW机组为例,通过对运行数据进行回归分析,获得了机组在启动、正常调峰和深度调峰阶段的CO2、NOx、SO2和粉尘的排放特性。结果表明:正常调峰阶段,随着机组负荷下降,煤耗和CO2排放因子逐渐增大,净烟气NOx排放因子先减小后增大,SO2排放因子略有下降;粉尘排放因子略有上升;深度调峰阶段,随机组负荷的进一步降低煤耗和CO2排放因子明显增大,净烟气NOx和粉尘排放因子迅速增大,SO2排放因子继续下降;启动过程净烟气NOx和粉尘排放因子明显高于调峰工况,SO2排放因子略小于调峰工况。另外,调峰过程中较高的升降负荷率使得原烟气NOx、SO2排放因子明显增大,净烟气粉尘排放因子明显增大。  相似文献   

13.
储氢技术及其关键材料研究进展   总被引:2,自引:1,他引:1  
氢能是未来能源结构中最具发展潜力的能源载体,氢的廉价制备、安全高效储送以及大规模应用是当今研究的重点,而氢能的储存是其中的关键性问题.本文综述了目前主要的储氢技术和储氢材料,如高压气态储氢、低温液态储氢、合金储氢、有机液体氢化物储氢、碳质材料储氢和金属有机骨架类聚合物储氢等,并对未来的研究方向进行了展望.  相似文献   

14.
采用光催化还原法制备了石墨烯-ZnIn2S4纳米复合微球。采用XRD、SEM、TEM、FT-IR、XPS和DRS等手段对样品进行表征, 结果表明, 经过光催化还原处理后氧化石墨被还原成石墨烯, ZnIn2S4纳米微球负载在石墨烯表面。光催化产氢的实验结果表明, 当石墨烯含量为2.0wt%、光催化还原时间为24 h时, 石墨烯-ZnIn2S4纳米复合微球在模拟太阳光下产氢量达到1540.8 μmol, 是纯ZnIn2S4纳米微球的9.8倍。增强光催化性能的原因归结为石墨烯在复合光催化剂中起到了电子快速传输作用, 同时还对纳米复合微球光催化产氢反应机理进行了分析讨论。  相似文献   

15.
刘强  丁杰  纪国敬  胡绢敏  顾浩  钟秦 《无机材料学报》2021,36(10):1053-1058
近年来, 随着化石资源的消耗和CO2的大量排放, 人类面临的能源危机和温室效应问题日益严峻, 而铁基催化剂催化CO2加氢直接合成烯烃是实现CO2减排及CO2转化与利用的最佳途径之一。本研究采用浸渍法制备了氧化锆(ZrO2)负载铁钴催化剂(Fe-Co/ZrO2)和ZrO2负载铁钴钾催化剂(Fe-Co-K/ZrO2)用于催化CO2加氢制低碳烯烃(C2=-C4=), 重点考察了K含量对催化反应活性的影响。活性测试结果表明, 在300 ℃和1.5 MPa下, 加入K使CO2转化率由40.8%提高到44.8%, 低碳烯烃选择性从0.23%增至68.5%, 并提高了反应性能的稳定性。表征结果显示, 加入K使Fe物种的外层电子密度增大, 提高了Fe对CO2的吸附强度, 促进了碳化铁的形成, 并有利于CO2在Fe物种上吸附后发生直接解离, 提升了CO2加氢制低碳烯烃性能。  相似文献   

16.
CO2排放导致的一系列环境问题,引起广泛关注,金属有机框架(MOFs)因其超高的孔隙率比表面积,被认为是捕集CO2的理想材料。采用微波辅助合成Ni-gallate(镍基没食子酸金属有机框架),并借助扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)等表征手段进行分析。结果表明:相较于传统水热合成,微波辅助合成的材料有着较高的结晶度和规则的尺寸形貌,在25℃时表现出更高的CO2吸附量(3.82mmol/g)。结合微波辅助合成快速高效的优点,通过相转化法和聚酰亚胺复合得到的聚合物材料,不仅具有良好的CO2吸附性能,而且有着优异的机械和热稳定性,有进一步发展成为工业CO2捕集材料的潜力。  相似文献   

17.
探索绿色发展、解决能源危机已成为近年来商业发展的趋势。金属卤化物钙钛矿因其独特的光催化性能而备受关注。其中,CsPbBr3钙钛矿具有较高的光催化活性和优异的稳定性,在光催化CO2还原方面发展迅速。在能源发展趋势下,减少碳排放和催化还原CO2作为燃料是研究热点和主要途径。然而,纯CsPbBr3较差的CO2吸附还原能力、严重的电荷复合和较低的电荷效率严重阻碍了钙钛矿光催化的商业化。为了解决纯CsPbBr3材料光催化中的一系列问题,对CsPbBr3钙钛矿进行表面改性或构建多组分复合材料是目前最经济、最有前景的解决方案。本文讨论了CsPbBr3钙钛矿的光催化反应原理及所面临稳定性和还原能力的阻碍,对CsPbBr3钙钛矿及其复合物的光催化CO2还原研究进行了系统的回顾。最后对构建更加稳定、高效及可持续性的CO2还原光催化剂新的探索方向进行了展望。  相似文献   

18.
实验研究了Ti3AlC2体材料在700~1000℃氢气氛中的热稳定性。通过XRD、SEM、EDS、XPS和Raman分析手段对反应产物和材料形貌进行了表征, 通过热力学软件Factsage对气体产物进行了理论模拟。在700~1000℃氢气氛(低O压)条件下, 固态产物是Al2O3、TiO2和石墨, 气态产物是CH4, 未检测到氢化物的生成。SEM分析表明, 样品表面未生成明显的孔洞和裂缝。通过Ti3AlC2临氢前后的物相及形貌变化分析结果, 初步表明这种材料具有良好的抗氢性能, 可能的原因是反应产物中生成的氧化物对Ti3AlC2基体起到了保护作用。  相似文献   

19.
近年来,全球范围因二氧化碳(CO2)的过量排放导致的环境问题日益严重,引起世界各国人民的广泛关注。电化学还原CO2转化为清洁能源和高价值化学品,不仅可以有效地缓解CO2导致的温室效应,而且有望为解决能源危机提供重要出路。本文简述了电化学还原CO2的反应原理,对近年报道的一些高选择性的二元金属催化剂进行分类归纳。综述了二元金属材料物质组成、原子配比、微观形貌、颗粒尺寸等物化性质对CO2还原性能的影响规律,并对部分催化剂的选择性增强机理重点分析。最后,讨论了二元金属材料高效选择性电化学还原CO2存在的主要问题和未来可能的研究重点。  相似文献   

20.
氢能源以其可再生性和良好的环保效应成为未来最具发展潜力的能源载体,氢能被公认为人类未来的理想能源,而氢的储存是发展氢能技术的难点之一.本文综述了目前主要的储氢材料,如合金储氢、配位氢化物储氢、碳质材料储氢、有机液体氢化物储氢,并对未来的储氢材料发展进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号