首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

2.
采用溶剂热法制备单分散的Fe3O4微球, 对其表面进行包覆SiO2和氨基化处理, 再与氧化石墨烯复合, 化学还原后得到Fe3O4-W-RGO复合材料。SEM和TEM照片显示, SiO2均匀包覆在Fe3O4微球(直径~440 nm)表面形成Fe3O4@SiO2核壳微球, 紧密束缚于RGO纳米片表面。XRD测试结果表明Fe3O4微球结晶度好、纯度高。电化学性能测试结果表明: 在0.01~3.00 V电压范围和0.1C倍率下, Fe3O4-W-RGO复合材料的首次放电容量为1246 mAh/g, 100次循环后保持830 mAh/g; 在2C倍率下放电容量达到484 mAh/g, 具有较好的倍率性能和循环性能。  相似文献   

3.
以聚丙烯酰胺(PAM)作为分散剂, 采用液相控制结晶-碳热还原法制备LiFePO4/C正极材料, 考察了PAM对LiFePO4/C正极材料性能的影响, 采用热化学分析、X射线衍射、扫描电镜、碳含量分析和充放电测试等分析测试手段对材料进行表征。结果表明, 将PAM溶于酸液中且添加量为1.5wt%时制备的LiFePO4平均粒径约为100 nm, 颗粒分散较为均匀; 该材料在0.1C、1C、2C、5C和10C倍率下首次放电比容量分别为153.8、142.5、138.4、128.7和124.3 mAh/g, 1C倍率下循环100次后容量保持率仍在99%以上; 交流阻抗分析表明: 1.5wt%PAM改性后的材料的各种阻抗值均降低, 锂离子的导电速率提高了28倍。PAM改性后的LiFePO4/C正极材料的离子及电子导电性提高了, 具有优良的倍率性能与循环性能, 有利于大规模推广应用。  相似文献   

4.
本工作采用缓冲溶液法制备Mn掺杂Ni(OH)2(Ni1-xMnx(OH)2, x=0.1, 0.2, 0.3, 0.4), X射线衍射测试表明样品主要是β相, 有少量Mn3O4杂相; 循环伏安测试表明, x=0.2的材料还原峰积分面积最大、还原分支的峰电流最高; 恒流充放电测试表明, 在100 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量最高, 其第20次循环放电比容量为271.8 mAh/g, 同等条件测试的商用β-Ni(OH)2放电比容量为253.6 mAh/g; 在300、500 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量仍保持最高, 分别为294.7、291.5 mAh/g, 而且Mn掺杂Ni(OH)2的循环稳定性也优于商用β-Ni(OH)2。Mn掺杂可改善镍电极的循环稳定性、降低镍电极成本, 具有广阔的应用前景。  相似文献   

5.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

6.
超高镍正极材料具有高比能、高电压和低成本等特点, 在新一代锂离子电池中备受关注, 但在电池的长循环过程中会出现微裂纹、机械粉化和不可逆相变, 导致差的循环性能。本研究采用简便的湿化学法制备了一系列Ca3(PO4)2包覆的超高镍LiNi0.91Co0.06Al0.03O2材料(NCA@nCP)。其中, NCA@1CP在1C (1C=200 mA/g)、2.7~4.3 V下可获得204.8 mAh/g的放电比容量, 100圈循环后容量保持率为91.5%, 甚至在2C的倍率下循环300圈后仍保留153.4 mAh/g的放电比容量。表征结果证实该包覆层可抑制材料的Li/Ni混排、不可逆相变和机械粉化, 从而大幅提升了循环稳定性。本研究表明Ca3(PO4)2包覆策略在提升超高镍正极材料储锂稳定性方面具有较大的应用潜力。  相似文献   

7.
以LiOH溶液和不同粒径的自制球形TiO2为反应物, 通过水热法快速地合成了尖晶石型结构的球形Li4Ti5O12, 并考察了材料合成的水热反应机理和电化学性能。TiO2在100℃、5 mol/L LiOH溶液中经水热反应20 h得到前驱体, 再经800℃热处理2 h便可得到粒径大小不同(0.5~1.5 µm)且分布均匀的球形尖晶石Li4Ti5O12材料。LiOH在水热反应条件下扩散到球形TiO2内部, 得到在分子水平混合均匀的Li-Ti-O中间体, 利于高温下生成纯相的尖晶石Li4Ti5O12。所得粒径大小不同的Li4Ti5O12材料均表现出稳定的电化学循环充放电性能, 其中, 粒径为0.5 µm 的Li4Ti5O12材料的电化学性能最好: 室温下, 以0.2 C的倍率进行充放电, 其可逆容量达到158 mAh/g, 70周后容量保持率高于99%; 同时还表现出优异的高温循环稳定性, 55℃下以0.2 C的倍率进行充放电, 50次循环后其可逆放电比容量仍能达到125 mAh/g。  相似文献   

8.
当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。  相似文献   

9.
采用碳酸盐共沉淀结合高温固相焙烧法制备了富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2, 并用不同量的FePO4对其进行表面包覆改性。SEM分析结果显示, FePO4可以均匀地包覆在富锂材料的颗粒表面, XRD显示包覆后的材料很好地保持了原有的层状结构, 且FePO4呈非晶态。电化学测试表明改变FePO4包覆量可以调节该材料特定的电性能指标: FePO4包覆量为2wt% 的材料具有最大的首次充放电容量, 在0.05C下分别为325.9和258.4 mAh/g; FePO4包覆量为4wt%的材料兼具较高的放电容量和循环稳定性; 材料的首次充放电效率随着FePO4含量的增加而逐渐升高, FePO4包覆量为20wt%时, 首次充放电效率达到97.4%。  相似文献   

10.
以喷雾热解法制备出了能量密度高, 电化学性能优异的LiCr0.2Ni0.4Mn1.4O4正极材料。采用热重分析、X射线衍射、扫描电镜、循环伏安、交流阻抗等手段进行了测试与表征, 并且在现有市售高电压电解液耐受条件下, 对不同截止电压(3.6~5.0 V, 3.6~5.2 V)的电化学特性做了详细的研究。结果表明: 此法所得材料峰形尖锐结晶良好, 且无杂质相生成, 粒度分布较为均一, 为微米-亚微米级颗粒。在5.2 V充电截止电压下, 0.5C倍率下首次放电容量高达142.9 mAh/g, 且0.5C及1C下二者的能量密度均在600 Wh/kg以上。当截止电压为5.2 V, 放电深度增大, 低倍率比容量提高, 但大倍率容量, 循环稳定性及放电电压工作平台下降均较为明显。  相似文献   

11.
用一种简单的方法制备了高性能的高电压尖晶石正极材料, 主要是调控正极材料中锂与过渡金属的摩尔比, 即通过Ni0.25Mn0.75(OH)2与Li2CO3进行高温固相反应制备了非化学计量比的Li1.05Ni0.5Mn1.5O4和化学计量比的LiNi0.5Mn1.5O4尖晶石型高电压正极材料。用扫描电子显微镜、X射线衍射、中子衍射、拉曼光谱、X射线光电子能谱以及循环伏安曲线对其形貌、晶体结构及元素价态和电化学性能进行了表征。研究发现, 非化学计量比的Li1.05Ni0.5Mn1.5O4中由于金属离子随机分布于16 d位置, 所以Ni/Mn阳离子无序化程度更高。非化学计量比的高电压正极材料具有更为优异的倍率性能, 并且在400次循环后比容量保持率高达91.2%。同时, 原位X射线衍射测试结果表明, 在充放电过程中非化学计量比的高电压正极材料发生连续单一的相转变, 可以提高晶体结构的稳定性。因此, 非计量比的尖晶石Li1.05Ni0.5Mn1.5O4正极材料在高能量密度的锂离子电池中具有更广阔的应用前景。  相似文献   

12.
刘沁  袁文  高学平 《无机材料学报》2014,29(12):1257-1264
采用喷雾干燥法和沉淀法, 制备了表面修饰TiO2(B) (2wt%、4wt%、6wt%和8wt%)的富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)结构测试分析结果表明, 修饰TiO2(B)后样品的体相结构仍然保持初始样品的层状结构, 仅氧化物颗粒表面附着有少量TiO2(B)纳米晶。示差扫描量热测试(DSC)表明, 与初始样品比较, 修饰TiO2(B)后样品的热稳定性得到明显改善。在2.0~4.8 V范围内进行恒流电化学性能测试。研究显示, 在0.1C(1C=300 mA/g)倍率下, 修饰4wt%TiO2(B)样品的首次放电比容量可达296.4 mAh/g, 首次库伦效率则由初始样品的77.7%提升到修饰TiO2(B)后样品的84.3%, 100周循环后电极容量保持率由初始样品的69.5%提升到修饰TiO2(B)后样品的80.2%。即使在阶梯倍率的2C倍率下, 修饰4wt%TiO2(B)的样品仍具有较高的电化学容量(166.5 mAh/g)。以上研究结果表明, 表面修饰TiO2(B)纳米晶可以显著改善富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2的热稳定性和电化学性能。  相似文献   

13.
以聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)为粘结剂, 用浸涂法在对苯二甲酸乙二醇酯(PET)隔膜上同时涂覆不同粒径的SiO2和Al2O3, 使PET的大孔得到更有效的填充, 充分发挥了两种陶瓷及其粒径的各自优势。系统考察了SiO2与Al2O3相对含量对陶瓷隔膜的表面形貌、孔隙率、吸液率、热稳定性、离子电导率和电化学阻抗谱(EIS)的影响。研究了SiO2/Al2O3为3/7(wt%)的陶瓷隔膜组装成MCMB/LiNi1/3Co1/3Mn1/3O2电池的电化学性能, 并与商业聚丙烯(PP)隔膜对比。结果表明: 该陶瓷隔膜具有更好的综合性能, 100次循环后的容量保持率为93.9%, 10C电流下仍具有82.7 mAh/g的容量, 优于商业PP隔膜。  相似文献   

14.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号