首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对现有的求解非线性动力方程v=H.v+f(v,t)的分段直接积分方法进行了改进,提出了新的预估式。该方法为显式预估-校正、自起步的单步四阶精度的精细积分算法,避免了对f(v,t)求导。算例表明:该文改进方法可用于求解多自由度、强非线性、非保守系统的动力响应问题;对研究解的稳定性也是一个有效的工具,而且比现有的分段直接积分方法和经典的Runge-Kutta方法计算精度高。  相似文献   

2.
慕文品 《振动与冲击》2009,28(7):131-134
摘要:对于受演变随机激励的线性多自由度体系,给出了计算其非平稳响应的扩展精细积分方法。首先采用虚拟激励法,将随机荷载转化成确定性荷载,然后采用Duhamel积分的精细计算方法,构造出统一形式的精确、高效递推格式。本文方法避免了矩阵的求逆运算,不依赖于系统矩阵或其动力矩阵的性态,提高了数值稳定性和应用范围。本文方法具有与混合型时程精细积分方法同样高的数值精度,而效率上要高于增维精细积分方法。算例验证了本文算法的优越性。  相似文献   

3.
将微分求积法应用于结构动力学方程的逐步时程积分时存在计算效率低的问题。为此,从数值积分角度出发,采用复化微分求积公式计算Duhamel积分项,并将其和精细积分法结合,可形成一种计算任意随机激励下结构随机振动时域分析的显式求解方法。该方法无需对系数矩阵求逆,能够减小在一个积分步长内载荷量线性化所造成的误差,同时也提高数值稳定性。与蒙特卡罗法和采用4阶精度的复化Cotes积分公式计算结构随机振动响应的方法作对比,所提方法计算精度高,计算效率优于蒙特卡罗法和复化Cotes积分方法。  相似文献   

4.
针对结构非线性问题,采用4阶Runge-Kutta法展开精细积分法中响应状态方程的Duhamel项,构造了一种既可以避免迭代又具有较高精度的精细Runge-Kutta混合积分方法,在此基础上提出了适用于车桥耦合振动高效求解的分析框架。车桥耦合系统由车辆、桥梁子系统组成,均采用有限元建模,其中车辆子系统采用部件刚体假定,而桥梁子系统借助于振型叠加法缩减自由度数目;两个子系统内部非线性作用以及系统间的相互作用通过非线性的虚拟力表达。以一节4轴客车匀速通过32m简支梁为研究对象,分别采用分析框架法、Runge-Kutta法进行动力分析。数值结果对比表明:相对于Runge-Kutta法,精细Runge-Kutta混合法能够显著提高计算收敛的积分步长;分析框架可以应用到实际工程中。  相似文献   

5.
假定任一时刻的位移可以根据其相邻时间步上的运动状态由Hermite插值函数确定,采用3节点高斯积分方法展开精细积分法中状态方程的Duhamel项,构造了一种改进的高斯精细积分算法用于求解结构非线性问题,在此基础上,提出了适用于车桥耦合振动研究的高效求解分析框架。车桥耦合系统由车辆、桥梁有限元子系统组成,其中车辆子系统引入部件刚体假定,而桥梁子系统借助于振型叠加法缩减自由度数目,两个子系统间的相互作用通过非线性的虚拟力表达。以一节4轴客车匀速通过32m简支梁为研究对象,分别采用所提出的分析框架、传统Newmark-β法进行动力分析。结果表明:相对于Newmark-β法,高斯精细积分方法既能避免求解线性方程组,又可显著提高计算收敛的积分步长,分析框架显示出良好的实用效果。  相似文献   

6.
根据Hamilton变作用定律构造了时空有限元矩阵;并根据传递矩阵原理,利用时间的一维性将时空有限元矩阵变换为时间方向的传递矩阵,将初值问题转化为一般矩阵相乘问题以方便求解。为了保证计算的稳定性,参考了精细积分的思想提出精细时空有限元方法,并给出线性问题在时间级数荷载作用下的计算式。数值分析结果证明该方法在线性问题分析上非常准确并可以推广到非线性动力方程的求解;只需将非线性解看作初始解和增量解的叠加,通过精细时空有限元线性求解方法计算增量解,逐步修正后即可得到非线性解。结果表明该方法是一个有效的求解非线性动力方程的方法。  相似文献   

7.
大型动力系统中常因局部的高频振动及非线性等特性限制了系统的积分步长而导致整体计算量激增,针对此问题提出一种分区域异步长显式-精细混合积分方法。在特性复杂的局部区域采取显式积分法,根据精度和稳定性要求取较小的时间步长求解;在其余常规区域则应用精细积分方法,采取可以跨越显式积分区周期的大积分步长求解。对于精细积分区域边界荷载,提出一种基于离散FFT变换的线性项与主频谐波项的组合表示方法,并给出了此种荷载形式下的精细积分计算格式。数值算例结果表明该法能够明显提高计算效率,在显式积分区域和精细积分区域都有很高的精度。  相似文献   

8.
动力学方程的解析逐步积分法   总被引:6,自引:0,他引:6  
提出了求解动力学方程的一个新型的逐步积分法。基于动力学方程的解析齐次解,构造出动力学方程解的一般积分表达式,借助于显式、自起动、预测-校正的单步四阶精度的积分算法,离散方程右端的等价荷载项,给出了一个新的解析逐步积分方法格式。如果用分块求解,其刚度阵、质量阵等将有较小的规模,将使计算效率更高。算例表明本文方法比中心差分法、Newmark、Wilson-θ、Houbolt法等有较高的精度,本文结果更接近解析解。本文方法也适用于非线性,因为本计算格式是显示,因此不需要迭代求解。  相似文献   

9.
传统动力时程直接积分法多采用低阶数值格式,需要选择非常小的时间步距才能获得满足精度要求的动力分析结果。该文将结构动力时程分析的积分求微法推广至多自由度情形,发展了一种具有较高计算效率的多自由度阻尼体系的动力时程高阶分析方法。将相邻的ρ个时步组成一个待求解时段,基于多自由度体系动力响应积分解,以精细积分法结合秦九韶算法计算各时间节点的矩阵指数。逆用微分求积原理发展一种针对含有矩阵指数卷积的高精度数值方法,逐时段求解得到体系各时刻的动力响应。该文方法为动力时程高阶分析方法,全部分析过程仅表现为一系列矩阵乘法及其递推计算,无需求解方程及额外插值,一步计算便可同时获得时段内ρ个时步的全部动态响应(实际动力分析时可取ρ=10~15),具备高效显式算法的特点。由于不必直接计算动力响应积分解中的定积分项,因而避免了对动力方程非齐次项进行特殊处理时所面临的困难。数值试验进一步表明,该方法能很快收敛到精确解,具有较高的计算精度,且数值稳定性好,在较大的时间步距下依然能得到较精确可靠的结果。  相似文献   

10.
针对非线性动力状态方程=H·v+f(v,t),结合广义精细积分法和预估-校正法,提出了用于非线性动力分析的广义精细积分法。在任一时间子域内,对计算过程中待求的vk+j/m(j=1,2,…,m),利用当前时刻的vk进行预估。将离散的非线性项用拉格朗日插值多项式展开并视为外荷载,结合广义精细积分法即可求解非线性系统的动力响应。该方法计算格式统一,易于编程,与四种单步法、一次预-校法及预估校正-辛时间子域法进行数值比较,计算结果表明,该方法具有很高的精度、稳定性及较高的效率。可用于多自由度结构体系的非线性动力反应分析。  相似文献   

11.
黄宇熙  崔颖  杨国刚 《振动与冲击》2023,(14):198-203+236
增维精细积分法是一种求解结构动力方程的高精度逐步积分算法,其步长的选取会对计算精度产生极大的影响,在实际应用中存在难以确定合适步长的问题。为满足实际工程中对计算精度和效率的要求,提出了一种计算误差的估计方法,并以估计误差和迭代收敛速度为基准,建立了一种自适应步长增维精细积分法。针对三种结构动力方程的算例结果表明,在计算各类线性及非线性振动问题时,该方法均可以在保证计算精度的前提下快速有效地控制算法的计算步长,并且仅需较少的额外计算消耗,显著提高了增维精细积分法的计算效率,使该方法在求解结构动力方程时更具计算优势和实用价值。  相似文献   

12.
该文讨论了考虑几何非线性动力方程数值积分方法,对比了常用的平均加速度方法(AAM)与M.A. Crisfield提出的能量守恒方法离散等式的差别。基于共旋方法编写了非线性有限元程序,并采用单摆作为验证算例,计算结果与解析解一致,验证了程序的可靠性。然后对平面桁架模型和某实际工程中的空间正放四角锥网架进行动力计算。算例分析表明随着时间积分步长的加大,平均加速度方法的计算结果都会出现不稳定的情况,而能量守恒积分算法表现出良好的稳定性。建议在非线性动力计算中使用能量守恒积分算法。  相似文献   

13.
结合指数矩阵的精细算法,提出了一类基于三次样条插值的精细积分方法。针对结构动力学方程一般解中的积分项,考虑在一个时间步长内激励为线性和正余弦两种变化形式,通过对积分项中的指数矩阵进行三次样条插值函数模拟,得到一组新的被积函数,最后通过多次分部积分,构造了一类新的高精度计算格式。在三次样条插值函数构造过程中引入了指数矩阵的精细算法,有效避免了中间过程中有效数字的丢失,同时还有效解决了HPD-F算法中涉及的矩阵求逆问题,大大增加了算法的数值稳定性。数值算例显示了该方法的有效性。  相似文献   

14.
结构动力方程的高斯精细时程积分法   总被引:13,自引:1,他引:12  
对线性定常结构动力系统提出的精细积分方法,能够得到在数值上逼近于精确解的结果,但是对于非齐次动力方程涉及到矩阵求逆的困难,计算精度取决于非齐次项的拟合精度等问题。提出将高斯积分方法与精细积分方法中的指数矩阵运算技巧结合起来,在实施精细积分过程中不必进行矩阵求逆,整个积分方法的精度取决于所选高斯积分点的数量。这种方法理论上可实现任意高精度,而且计算效率较高,数值例题显示了方法的有效性。  相似文献   

15.
基于参数二次规划与精细积分方法的动力弹塑性问题分析   总被引:3,自引:1,他引:2  
给出了将参数二次规划方法与精细积分方法相结合进行结构弹塑性动力响应分析的一条新途径。基于参变量变分原理与有限元参数二次规划方法建立了动力弹塑性问题的求解方程,方法对于关联与非关联问题的求解在算法上是完全一致的。对于动力非线性方程求解则进一步采用了被线性问题分析所广泛采用的精细积分方法,推导了方法在动力弹塑性问题求解上的算法列式。所给出的数值算例在验证本文理论与算法的同时,进一步证实了精细积分方法在动力学分析中所具有的各种良好性态。  相似文献   

16.
应用复化Cotes数值积分方法改进精细积分方法,建立一种新的高效的精细积分方法:C-PTSIM,并基于有限元理论讨论了此方法在任意随机激励下线性结构随机动力响应的应用。采用复化Cotes积分方法计算结构动力响应状态方程一般解的积分项,推导出随机激励下结构动力响应的显式表达式,利用一阶矩和二阶矩运算规律计算结构响应的均值和方差。C-PTSIM方法避免了精细积分过程中系数矩阵求逆问题,有效改善了精细积分在时间步长内载荷线性化假设带来的误差,在不改变时间步长时采用高次数复化积分时获得与更精细步长时同样精度的结果,表明该方法对时间步长的弱敏感性,并能节省大量的计算时间。基于此方法给出结构随机振动响应分析算例,并与其他方法对比,说明了该方法的高效率和高精度。  相似文献   

17.
提出精细积分法求解移动质量与结构相互作用的新的计算方法。分析焊接接头不平顺和轨枕悬空对轮轨力和轨道部件之间相互作用力的影响。该方法采用非齐次项的Duhamel积分的精细积分算法,避免状态空间下系统矩阵求逆。通过Lagrange插值多项式获得移动质量与结构相互作用的载荷项外插公式,无需迭代求解移动质量和结构非线性相互的动态响应。系统矩阵具有时不变性,无需反复计算指数矩阵。在每个积分步内,利用Euler梁的形函数分解移动载荷项,获得移动载荷与结构相互作用时间和空间连续变化的情况。计算结果表明,轮轨力的第一个峰值主要由于焊接接头不平顺造成,轨枕悬空主要影响轮轨力第二峰值。焊接接头不平顺区易出现轨枕悬空。轨枕悬空出现后,悬空区有扩大的趋势。  相似文献   

18.
移动荷载过桥的精细计算   总被引:2,自引:1,他引:1       下载免费PDF全文
摘要:对于作用点位置随时间连续变化的移动荷载,本文采用精细积分法求解桥梁结构动力平衡方程,用Hermite插值函数模拟节点等效荷载,并推导出常量移动荷载在任意时间步长内的Duhamel积分格式,包括时间步长的开始和结束时刻集中荷载分别在同一个单元、相邻单元和不相邻单元三种情况。数值算例表明,即使采用最大时间步长,本文提出的方法仍可求得高精度数值解,与其它数值方法比较具有明显优势。  相似文献   

19.
非线性动力分析避免状态矩阵求逆的精细积分多步法   总被引:1,自引:1,他引:0  
将精细积分法和预估-校正Adams Bashforth Moulton多步法相结合,提出了高精度的精细积分多步法,对非线性动力状态方程进行求解,避免了对状态矩阵求逆.该方法与精确值和现有Adams多步法进行比较,数值计算结果表明该方法是一种高精度、高效率和稳定性较好的方法.该方法可方便地进行不同阶次的积分运算.  相似文献   

20.
郑敏毅  张农  孙光永 《振动与冲击》2012,31(23):118-122
应用改进的两变量展开法求解非线性含有三次非线性项的三阶微分方程的近似频率和近似解析周期解。该方法结合了Lindstedt-Poincare方法与两变量展开法不仅可以适用于弱非线性振动问题的求解而且还可以适用于强非线性振动问题的求解。文中以一个不含速度线性项的非线性jerk方程作为例子分析并得到二阶近似周期和二阶近似解析周期解,与数值方法给出的“精确”周期解比较,二阶近似解析周期解比一阶近似解析周期解要精确得多。结果表明,改进的两变量展开法能够适用于求解非线性jerk方程。而且在jerk方程不含速度线性项时该方法仍然有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号