首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photonic crystal heterostructures constituting of two photonic crystals with different lattice constants are fabricated using the modified self-assembly method and their structural and optical properties are investigated. The results show that these photonic crystal heterostructures of high quality possess deep photonic band gaps and steep photonic band edges in their transmission spectra. Deep double photonic band gaps, steep photonic band edges and high transmittance in the pass band show good ordering of the heterostructure and may offer a probability for studying late-model ultra-fast all-optical switches.  相似文献   

2.
We demonstrate that the width and spectral position of the band gap of opal photonic crystals can be controlled by varying the concentration of solution in the opal pores. An experimental technique is proposed which enables identification of both the first and second photonic band gaps in the reflection spectrum of opal. The ability to observe the second band gap allows a dispersion relation to be derived for the refractive index of the infiltrated substance. The calculations are performed using a model for a one-dimensional periodic layered medium with two refractive indices. We obtain an ω(k) dispersion relation and the reflection spectra of a photonic crystal in the [111] direction at different solution concentrations.  相似文献   

3.
In a photonic band structure two kinds of gaps with different origins can be observed. Photonic gaps are determined by the symmetry of the photonic crystal, the lattice constant, and the contrast of the dielectric functions for the two components. Polaritonic gaps originate from the bulk optical properties of one of the components. Excitation of ionic components in the lattice results in a photon energy interval in which the dielectric function is negative. Here we investigate the interaction between photonic gaps and polaritonic gaps in one-dimensional and two-dimensional photonic structures. In particular, we show that by such interactions the polaritonic gap can be made wider and stronger, be left unchanged, or be made to vanish.  相似文献   

4.
Abstract

We present an experimental and theoretical study of the photonic band gap in the propagation of surface plasmons (SPs) on periodically corrugated surfaces. Our main purpose is to investigate the case where the band gap width is larger than the energy distance between the SP dispersion curve for a flat surface and the light line. We introduce a physical model of the interaction of light waves with SPs and derive an analytical expression for the SP wave vector near band gaps based on the coupled-mode approach involving three interacting modes (two of them are SP modes and one is a light mode). By using the interferometric measurement we have studied, for the first time, the SP propagation parameters in the vicinity of the photonic band gap (10 μm wavelength region). The predictions of our theory are in good agreement with the experimental data.  相似文献   

5.
Using the Dirichlet-to-Neumann map method and generalization of this method, we have been able to calculate the photonic band structure of two-dimensional (2D) metallodielectric photonic crystals composed of metal-coated circular dielectric rods. The rods are embedded in an air background with a square array. We are interested in considering transverse electric (TE) mode of electromagnetic waves. The resulting band structures show the existence of photonic band gaps as well as some flat band regions. We theoretically study the effect of the dielectric constant and radius of the dielectric core on the photonic band structures. There are some interesting results compared to the case of solid metallic rods (without dielectric core) such as appearing the new photonic band gaps and a flat band region with the characteristic of cavity modes.  相似文献   

6.
We have studied the reflection spectra of opal photonic crystals with air-or ethanol-filled pores at different diameters of the silica spheres. An experimental technique has been proposed which enables identification of both the first and second photonic band gaps in the reflection spectrum of opal. The ability to observe the second band gap allowed us to derive a dispersion relation for the refractive index of the infiltrated substance. The calculations were performed using a model for a one-dimensional periodic layered medium with two refractive indices. We obtained ω(k) dispersion curves for electromagnetic waves in a photonic crystal (at normal incidence). The ω(k) dispersion law was used to find a dispersion relation for the reflectance of the photonic crystal.  相似文献   

7.
We review the optical guidance properties of hollow-core photonic crystal fibers. We follow a historical perspective to introduce the two major optical guidance mechanisms that were identified as operating in these fibers: photonic bandgap guidance and inhibited coupling guidance. We then review the modal properties of these fibers and assess the transmission loss mechanisms in photonic bandgap guiding hollow-core photonic crystal fiber. We dedicate a section to a review of the technical basics of hollow-core photonic crystal fiber fabrication and photonic microcell assembly. We review some of the early results on the use of hollow-core photonic crystal fiber for laser guiding micro-sized particles, as well as the generation of stimulated Raman scattering, electromagnetically induced transparency and laser frequency stabilization when the fiber core is filled with a gas-phase material. We conclude this review with a non-exhaustive list of prospects where hollow-core photonic crystal fiber could play a central role.  相似文献   

8.
令方形波导内的电介质介电常数沿波导方向周期变化,实际上是非周期方向受限的一维光子晶体,不妨称为波导光子晶体。本文利用经典电动力学的方法计算了波导光子晶体的态密度,发现当波导宽度与其内部一维光子晶体晶的格常数可比拟时,会出现光子带隙;而且,波导宽度对系统的态密度有明显影响,随着波导宽度的增大光子带隙逐渐闭合。  相似文献   

9.
We have measured visible to near-UV reflection spectra of opal photonic crystals infiltrated with ferroelectrics: barium titanate, sodium nitrite, potassium iodate, and triglycine sulfate. An experimental procedure has been developed for the infiltration of various ferroelectrics into opal pores through laser ablation and laser implantation. Using a fiber-optic probe, we were able to analyze surface reflection spectra of photonic crystals with a 0.2-mm resolution. A deuterium lamp was used as a broadband UV source, which allowed us to observe both the first and second [111] photonic band gaps in the reflection spectrum of opal crystals.  相似文献   

10.
In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.  相似文献   

11.
The present paper describes the theoretical investigation of enlarged reflection bands (photonic band gaps) in a 1D star waveguide (SWG) structure consists of superconductor and dielectric as its constituent materials. For the present study, we take the different combinations of superconductor and dielectric materials as a backbone and side branches of the SWG structure. In order to obtain the dispersion relation, Interface Response Theory (IRT) has been employed. Photonic band gaps of SWG structure having superconductor?Csuperconductor, superconductor?Cdielectric, and dielectric?Csuperconductor materials are compared with the band gaps of the conventional photonic crystal (PC) structure having superconductor?Csuperconductor and dielectric?Csuperconductor materials. Analysis of the dispersion characteristics shows that there exists no band gaps for conventional PC when both layers are made of the same superconducting materials (as the usual case) while the SWG structure shows forbidden bands of finite width even the backbone and side branches are made of same materials. Also, the SWG structure having superconductor?Cdielectric shows the wider reflection bands in comparison with the structure having dielectric?Csuperconductor as its constituent materials, while for the conventional PC structure it is same in both the cases. Further, the effect of temperature and the effect of variation of number of grafted branches on the photonic bands of SWG structure have been studied.  相似文献   

12.
It is now well established that two-dimensional structures with dielectric variations based on quasicrystalline tilings are able to support photonic band gaps. Here, we have investigated the properties of the localized defect modes with frequencies within the photonic band gap for a certain kind of two-dimensional octagonal photonic quasicrystal with lattice vacancies breaking the quasi-periodic symmetry. The eigenfrequencies of such localized modes are given as a function of filling fractions for four distinct microcavity designs, and the electromagnetic field profiles of the localized modes are explored. The calculations of the eigenfrequencies and electromagnetic field profiles were performed using a supercell approximation in a plane wave method.  相似文献   

13.
The analysis of band structure of one-dimensional (1-D) photonic crystal containing dispersive and non-linear dispersive materials has been presented. The band spectra for the different combination of photonic crystals have been calculated by the well-known plane wave expansion method. The effect of the dispersive and non-linear materials on the band structures has been determined. The third-order nonlinearity has been considered in the non-linear material, and Lorentz–Drude model has been taken for dispersive material. The band gaps of considered photonic crystal are affected by the nonlinearity in the presence of dispersive material like gold. We have observed that the normalized frequency difference between photonic bands decreases on increasing intensity of input beam. This work may be useful in optical switching devices.  相似文献   

14.
Abstract

We examine the photonic band structure of two-dimensional (2D) arrays of dielectric holes using the coherent microwave transient spectroscopy (COMITS) technique. Such 2D hole arrays are constructed by embedding low-index rods (air) in a dielectric background of higher-index Stycast material (n = 3·60). The dispersion relation for electromagnetic wave propagation in these photonic crystals is directly determined using the phase sensitivity of COMITS. We find that both the square and triangular lattice structures exhibit photonic band gaps that are common to both polarizations for all wave-vectors along major symmetry axes. In addition, the connectivity of the high-index dielectric and the opening of a large gap for propagation with E field perpendicular to the hole cylinders are found to be important criteria for generating a large absolute photonic band gap.  相似文献   

15.
三维光子晶体的制备技术研究进展   总被引:2,自引:0,他引:2  
张辉  赵晓峰  唐清 《功能材料》2003,34(2):118-120,125
光子晶体是周期性介电结构.它能象周期性原子结构中的电子禁带一样.产生光子禁带。自从1987年Yablonovitch提出光子晶体的概念以来,有关光子晶体的各种研究非常活跃。本文回顾了三维光子晶体的制备技术研究现状,旨在激发不同学科领域研究人员的想象力和创造力.使他们从一些可能的光子晶体制造途径中有所裨益.并将这种可能性转变为现实。  相似文献   

16.
The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve electronically. When created in commonly used materials, these devices could operate at powers of only a few milliwatts. Moreover, if these designs are combined with materials and systems that support electromagnetically induced transparency, operation at single-photon power levels could be feasible.  相似文献   

17.
A binary genetic algorithm with floating crossover and mutation probabilities is used to design two-dimensional photonic crystals for large absolute band gaps under a light line. The unit cell is composed of a small number of round rods and is arranged in a square lattice. The photonic band structure of each chromosome is calculated by the plane-wave expansion method. Starting from randomly generated photonic crystals, the genetic algorithm finally yielded a photonic crystal with an absolute common band gap of 0.0618(2πc/a) at the mid-frequency of 0.4084(2πc/a).  相似文献   

18.
In this paper, the possibilities of designing refraction index optical sensors in planar waveguide photonic crystals are demonstrated for the first time. Photonic crystals obtained by connecting in cascade planar optical waveguides with high index contrast are analyzed. Photonic band gaps (PBGs) and photonic windows (PWs) were obtained. If a local defect is introduced in the PBG structure, the optical path length is modified and on states can be created in the gap. Besides, the on states wavelengths can be tuned if the optical path of the defect is modified: changing the physical length and/or the refraction index of the defect. In this way, planar waveguide photonic crystals could be used for sensing applications when a specimen modifies the refraction index lattice site. Sensing properties of planar waveguide photonic crystals, with one, two and three sensing channels, are demonstrated.  相似文献   

19.
We have investigated the photonic band gaps (PBG) and omnidirectional band gaps in one-dimensional photonic crystals made up of alternate layer of exponential graded index material and negative index material. We have considered the influence of material properties, geometrical parameters and material composition on the PBG and omnidirectional band gap. Results show that the parameters of exponential graded index material and negative index material can change the photonic and omnidirectional band structures remarkably. Number and bandwidth of PBG increases with increasing the negative index material layer thicknesses while thicknesses of graded index layer only have an effect on the bandwidth of PBGs. The bandwidth of PBG also depends on grading profile parameter of exponential graded index layers and bandwidth can be tuned with increase the value of grading profile parameter. This work can facilitate the design of filters and reflectors, and provide the basic understanding of the influence of graded index materials and metamaterials on the PBG properties.  相似文献   

20.
We present a study of the primary band gaps of a variety of two-dimensional photonic crystal lattices over the air-filling fraction (AFF) parameter space for different refractive index contrasts. Our results exhibit a variety of unexpected trends and may be useful for better designs of photonic crystal devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号