首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Part A》2002,33(4):471-481
Resin transfer molding (RTM) is considered a promising manufacturing process for high performance composite materials. In the RTM process, gate/vent location is one of the most important variables in process design. It has a great impact on mold filling time and resin flow pattern, thus affects the process efficiency and product quality. Many studies have been conducted on optimization of RTM mold filling process to determine the locations of gates and vents. Most of them approached the optimum process design problem via numerical method-based process simulations. Due to the extensive computations involved, such approaches are difficult to be implemented for large and complex parts. This paper introduces a new approach to optimum arrangement of gates and vents for two-dimensional or two and a half-dimensional parts based on the mesh distance concept. With the assumption that the resin first fills the nodes closest to gates, the vent locations that minimize the area of trapped air can be determined. With the objective of minimizing the maximum distance between gates and vents and avoiding dry spot formation, genetic algorithm was employed to carry out the gate location optimization. The new RTM process design approach was tested on numerous cases obtained from the literature. It was found that the new approach was very efficient and effective in finding the optimal locations for gates and vents. The resulting gate and vent locations lead to satisfactory process performance as indicated by the optimal process performance index. The computational time required by the new approach was only a fraction of that reported by those simulation-based methods in the literature.  相似文献   

2.
Due to the increasing variations in raw materials and manufacturing processes, composite manufacturing processes have more part-to-part variations compared with the metal manufacturing processes. To improve part quality consistency, tooling design optimisation is an imperative step for addressing the stochastic behaviour of composite manufacturing processes. This paper presents an optimisation approach for the typical composite manufacturing technique of resin transfer moulding (RTM), which minimises the sensitivity of the mould design to uncertain material properties by choosing appropriate locations of injection gates and vents. This paper proposes a stochastic simulation based approach for the RTM processes. Normal distribution and Weibull distribution were utilised as the statistical models for representing the permeability values for the main region and race-tracking, respectively. Based on the statistical properties of the permeability, a graph-based two-phase heuristic (GTPH) was adopted to minimise the flow dispersion value (a quantitative measure for part quality consistency) such that the process design is not sensitive to the material and process parameter variations.  相似文献   

3.
Resin transfer molding (RTM) has become one of the most widely used processes to manufacture medium size reinforced composite parts. To further enhance the process yield while ensuring the best possible quality of the produced parts, physically based optimization procedures have to be devised. The filling of the mold remains the limiting step of the whole process, and the reduction of the filling time has an important impact on the overall cost reduction. On the other hand, the injection cycle has to be appropriately carried out to ensure a proper fiber impregnation. Indeed, a partial fiber impregnation leads to the creation of micro-scopic and macro-scopic voids.In the present work, based on a double scale flow model and the capillary number Ca, an optimization algorithm is proposed to minimize the micro/macro-voids in RTM composite parts. The optimized injection flow rate ensures an optimum Ca at the flow front during part filling. The implemented algorithm allows the use of various constraints such as maximum capabilities of the injection equipment (i.e., maximum pressure or flow rate at the injection gates) or maximum velocity to avoid fiber washing. Bounded by these constraints, the optimization procedure is devised to handle any injection configuration (i.e., injection gates or vents locations) for two or three-dimensional parts. The numerical model is based on a mixed (FE/CV) formulation that uses non-conforming elements to ensure mass conservation. The proposed algorithm is tested for two and three-dimensional parts while emphasizing the important void reduction that results from the optimized injection cycle.  相似文献   

4.
In resin transfer molding (RTM) a stack of fiber mats or woven rovings is laid inside the mold cavity. Then the mold is sealed and resin is injected. The computer simulation of the injection phase in resin transfer molding (RTM) can help the mold designer to position properly the injection ports and the air vents, to select an adequate injection presssure and to optimize the cycle time. The purpose of this article is to present a finite element simulation model of the filling process that can be applied to three-dimensional “thin shell” molds. An application to a subway seat is described to illustrate the various stages of the simulation  相似文献   

5.
A new methodology is presented to simulate mold filling in resin transfer molding (RTM) using a combination of the level set and boundary element methods (BEMs). RTM is a composite manufacturing process where a liquid resin is injected in a closed rigid mold containing a dry fibrous reinforcement. Process simulation is motivated by the importance of tracking accurately the motion of the flow front during the mold filling stage. The BEM solves the equation governing the resin flow and the level set method is implemented to track the resin front in the mold. This formulation opens up new opportunities to improve RTM flow simulations and optimize injection molds. The present paper focuses on isothermal resin flow in undeformable porous medium. The implementation of the numerical algorithm is described and several examples of two-dimensional filling with single or multiple injection gates are presented. The robustness of the coupling and the ability to predict accurately the position of the front by this new model are discussed. It is also shown how dry spot formation can be tracked precisely during the simulation and how a generalization of this approach allows predicting resin flow across obstacles.  相似文献   

6.
《Composites Part A》2004,35(10):1149-1159
In the resin transfer molding process for advanced polymer composites manufacturing, the fiber preform is placed in the mold cavity and a thermoset resin is injected into the mold to impregnate the stationary preform. The resin displaces the air in the mold through openings called vents. Once the resin emerges out of the vents, the injection is discontinued. The near net-shaped composite part can be demolded after the resin cures. Ideally, the vents should be placed at the locations where the resin arrives last to ensure the complete saturation of the preform. However, the racetracking phenomenon, in which the resin flows faster along the minuscule channels induced by imperfect fits between the preform edges and the mold walls, can dramatically change the resin infiltration process. The ramifications of racetracking are that the resin may arrive at the vents before completely impregnating the preform and create undesired dry spots, which are fiber regions devoid of resin. The racetracking strength is not repeatable and may vary from one injection trial to next. Hence, the online strategic flow control can be useful in improving the processing reliability and the parts quality by re-directing the flow to arrive last at the vents. In this article, an online strategic flow control system consisting of a flow sensing network and a flow actuation network is proposed. A flow pattern recognition technique, which is based on the dimensionless time vector collected by the flow-sensing network, is developed in order to perform the online flow characterization effectively. Flow simulations are utilized to off-line design the flow control system. An evaluation function is formulated to optimize the flow sensing network design. A multi-tier genetic algorithm is implemented to optimize the locations of vents and gates along with the necessary control actions. A numerical case study for testing the computer-generated flow control solutions is presented. It was found that there was significant improvement in the success rate (fewer dry spot regions) due to the use of the strategic flow control and the automated design approach.  相似文献   

7.
树脂传递成型加工溢料口位置的快速确定法   总被引:5,自引:1,他引:4       下载免费PDF全文
提出了一个决定溢料口的快速算法。在这个算法中,采用已被广泛使用的有限元模型,假设树脂首先注满离注射口近的节点,再根据溢料口的位置安排要求避免干点的出现这一点来决定其位置。本方法的关键是如何计算复杂模型中的两点之间沿形面的距离,采用一种新的方法来计算沿复杂表面的两点之间的距离。计算的实例表明该方法确定溢料口位置的快速及有效。  相似文献   

8.
D. Nielsen  R. Pitchumani   《Composites Part A》2001,32(12):1015-1803
Manufacturing of quality products via liquid molding processes such as Resin Transfer Molding (RTM), calls for a precise control of resin progression through fibrous preforms during mold fill. Lack of an effective process control leads to formation of dry spots and voids that are detrimental to product quality. This study presents the use of physics-based process simulations in real-time, towards a generalized process control. The implementation of process simulations for on-line model-predictive control requires that the simulation time scales be less than the time scales of the process. An artificial neural network trained using data from numerical process models is used to provide rapid, real-time process simulations for the model-based control. A simulated annealing algorithm, working interactively with the neural network process model, is used to derive optimal control decisions rapidly and on-the-fly. The controller performance is systematically demonstrated for several processing scenarios.  相似文献   

9.
以典型车身结构B柱为研究对象,结合实验与仿真分析研究其树脂传递模塑(RTM)工艺的优化设计方法。研究了通过注射方式的优化控制树脂流动前沿,从而达到降低制件孔隙率和保证制件质量的目的。首先通过自制的变厚度渗透率测试模具获取所选用织物的渗透率,之后通过真空辅助RTM实验与对应模拟仿真进行对比分析来验证所采用仿真方法与渗透率数据的可靠性。最后结合充模周期与孔隙率控制理论对RTM工艺注射口分布及注射方式进行优化设计。结果表明,针对所选定车身结构,优化速率注射方式所获得的制件孔隙率最低,但充模周期较长,而基于双点注射的恒流量注射方式能较好地兼顾充模周期与制件孔隙率的要求。  相似文献   

10.
视窗化RTM工艺充模过程模拟仿真技术研究   总被引:11,自引:6,他引:5       下载免费PDF全文
根据RTM工艺树脂流动充模模型,研究和开发了基于FEM/CV算法的RTM工艺复杂渗流充模过程数值模拟软件平台-BHRTM-2。BHRTM-2在视窗系统下运行,带有FEM网格捕捉器窗口可直观方便地设置注射口、溢料口和工艺参数,操作简单,能够模拟复杂边界制件的树脂流动充模过程、显示充模过程中任意时刻模腔内压力的分布场、流动前峰和预测充模时间及可能的干斑缺陷位置,为RTM工艺设计与优化提供了有效技术手段。文中对BHRTM-2的模拟结果的正确性和可靠性进行了理论与实验验证,并给出了具体算例。   相似文献   

11.
《Composites Part A》2007,38(6):1547-1568
To prevent dry spot formation during fabrication of composite parts by Resin Transfer Molding (RTM), a control interface and four different adaptive control algorithms have been developed and tested with numerical simulations. The interface is capable of controlling the flow pattern of resin as it fills a mold containing a preform of fiber reinforcement, provided that the mold is equipped with multiple inlet gates, a single vent and a spinal sensor system that continuously feeds the interface with the resin flow front locations along the spine lines connecting the inlet gates to the vent. Four different adaptive control algorithms targeting on injection flow rate control, injection pressure control, linearly-corrected pressure control, and the combined flow rate and linearly-corrected pressure control have been proposed and incorporated with the control interface. To provide desirable controllability of the filling process and effective utilization of the resin dispensing equipment, the final formulations were optimized by means of numerical simulations of a rectangular RTM part containing different permeability distributions. The results were compared to investigate the strengths and weaknesses of the spinal adaptive control algorithms in terms of dry spot size, filling speed, and the minimum responding speed of injection pump. Finally, a complex geometry case study was conducted to validate and highlight the spinal adaptive control algorithms’ capability in handling flow disturbance for a complex RTM mold filling process which involves irregular mold geometry, multiple inserts, significant permeability and racetracking variations, and non-straight spinal sensors.  相似文献   

12.
Employing optimum structural design strategies and accompanying optimal production processing while employing efficient and cost effective methods is a key for the expansion of composite structures in various industrial applications. Within this context, Resin Infusion under Flexible Tooling (RIFT) process has become a rapidly growing manufacturing approach for large scale and complex parts. In this study, replacement of automotive body parts with glass woven fabric/epoxy composite manufactured by RIFT Type I (RIFT I) process is investigated both experimentally and numerically to improve the mechanical characteristics with weight saving. The optimization of the laminate stacking sequence is the first step taken. Then the simulation of resin infusion for the optimum location of gates and vents in order to shorten the filling time, decrease dry spots and voids, and avoid costly and time consuming trial-and-error procedures. Numerical results of the filling time and fluid front position over time are assessed by comparison with the experimental data and good accuracy was obtained. Based on the results of the optimization, an automotive part with a complex geometry is fabricated with 50% weight saving relative to steel.  相似文献   

13.
A process cycle of resin transfer molding (RTM) consists of two sequential stages, i.e. filling and curing stages. These two stages are interrelated in non-isothermal processes so that the curing stage is dominated by the resin flow as well as temperature and conversion distributions during the filling stage. Therefore, it is necessary to take into account both filling and curing stages to analyze the process cycle accurately. In this paper, a full three-dimensional process cycle simulation of RTM is performed. Full three-dimensional analysis is necessary for thick parts or parts having complex shape. A computer code is developed based on the control volume/finite element method (CV/FEM). The resulting computer code can provide information regarding flow progression and pressure field during mold filling; and temperature distribution and degree of cure distribution for a process cycle. The computer code can also be used for process cycle simulation of composite structures with complex geometry and with various molding strategies including switching injection strategy, multiple gate injection strategy and variable mold wall temperature. Numerical examples provided in the present work show the capabilities of the computer code in analyzing the process cycle.  相似文献   

14.
The role of initiators with different reactivities on the process cycle of nonisothermal resin transfer molding (RTM) was examined using the numerical simulation. A new process model was developed based on flow, heat and mass transfer equations combined with an appropriate mechanistic kinetics model which elucidates the functions of the initiators in the system. The process cycle of RTM with both single initiator and dual-initiator (combination of two initiators) was analyzed. The numerical simulations revealed that the single initiator with high reactivity reduces the cycle time, but there is a risk of incomplete mold filling and nonuniform temperature distribution. For dual-initiator system different scenarios of initiators injection including premixed initiators, switching the initiator at a given cavity filled fraction and ramped injection of highly reactive initiator were examined. It was found that the dual-initiator system leads to reduced cycle time and improved temperature distribution with no risk of incomplete filling.  相似文献   

15.
采用自主开发的RTM工艺3D模拟系统对所选复合材料构件进行了模拟分析,由此确定了最佳注射方式及注射口和溢料口的合理位置,在此基础上详细研究了消除构件干斑缺陷的方法,为优化工艺提供了依据.  相似文献   

16.
A comprehensive tooling force analysis is presented for rigid tool Liquid Composite Moulding (LCM) processes such as Resin Transfer Moulding (RTM) and Injection/Compression Moulding (I/CM). This has been implemented within SimLCM, a generic LCM filling simulation under development at the University of Auckland. The simulation has been verified against existing analytic and semi-analytic solutions, considering fill times and clamping force due to reinforcement compaction. Industrial application is demonstrated through consideration of a fireman’s helmet, which has demonstrated the complex evolution of both local and global tooling forces during RTM and I/CM cycles. Resultant forces are computed in the closing and lateral directions, having practical benefits for design of moulds and supporting equipment. The evolution of tooling forces has been shown to be sensitive to the accuracy of the applied fibre reinforcement compaction model, which is used to predict normal and tangential stresses exerted on mould surfaces.  相似文献   

17.
This paper presents experimental observations from the filling and post-filling stages of 1D axisymmetric Resin Infusion (VARTM) and RTM Light. A series of experiments have been performed to investigate the influence of mould flexural stiffness and fill mode on fluid pressure, cavity thickness, filling stage time, and post-filling stage time. Observations are also made on the effect of those parameters on the repeatability of nominally identical experiments. This paper helps identify the circumstances where a RTM simulation would be sufficiently accurate for an RTM Light process, and consequently where a full flexible tooling simulation is necessary.  相似文献   

18.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

19.
树脂传递模塑(resin transfer molding,RTM)过程的数值模拟对于优化工艺参数和模具设计、控制制品质量等具有重要意义.本文简述了RTM工艺的流体流动特点,介绍了RTM工艺过程数值模拟的理论基础,综述了RTM工艺过程数值模拟的发展历程,并展望了其发展趋势.  相似文献   

20.
Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号