首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A medium-carbon steel was treated by the bainitic isothermal transformation plus quenching and partitioning (B-QP) process to obtain bainite/martensite/retained austenite multiphase microstructure, and its fatigue crack propagation (FCP) behavior was evaluated in contrast with BAT (bainite austempering) sample with fully bainite microstructure. Results show that B-QP sample exhibits a lower FCP rate and higher fatigue threshold ΔKth (12.6 MPa·m1/2). Moreover, the FCP path of B-QP sample displays a strongly tortuosity and more crack branching due to more filmy retained austenite (7.2%) and higher percentage of high angle misoriented boundaries (68%). The larger crack tortuosity and the secondary cracks as result of crack branching are primarily responsible for the lower FCP rate of B-QP sample. In addition, the FCP rate curve of B-QP sample shows a pronounced small plateauing at the near-threshold zone, which can be ascribed to the mechanical twinning that occurred in the filmy retained austenite.  相似文献   

2.
Performance of TRIP (transformation induced plasticity) aided steel depends on the amount and stability of retained austenite in the final microstructure. In the current work, a small sized C-Mn-Si-Al-Nb steel was made and suitably heat treated to produce multiphase TRIP microstructure. A combination of relevant transformation models and empirical artificial neural network based model was used to select the heat treatment parameters required to achieve the desired amount of retained austenite. Characterisation of microstructure carried out using a variety of techniques confirmed the predictions of these models. The alloy was found to have an attractive combination of strength and ductility.  相似文献   

3.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

4.
We elucidate here the role of isothermal hold temperature of 300–500°C after intercritical annealing at 760°C on bainitic transformation and in governing the stabilisation of retained austenite in a 0.23C-1.35Si-1.82Mn steel. A critical analysis was attempted to explain the observations using displacive mechanism of bainite formation in the attempt to endeavour to understand the kinetics of bainitic transformation during isothermal holding. The model predicted that carbon enrichment in austenite was of particular significance in governing the stability of retained austenite. Thus, through the contribution of transformation induced plasticity effect of retained austenite, high tensile strength (964?MPa) and excellent ductility (uniform elongation of 24.5% and total elongation of 32%) was obtained on isothermal holding at 400°C.  相似文献   

5.
New carbide free bainitic microstructures are gaining an increasing interest on behalf the scientific and industrial community. The excellent combination of mechanical properties achieved in those microstructures with no need of complex heat treatments or thermomechanical processes represents their main advantage. The strength is mainly achieved by means of the very fine bainitic ferrite plates, consequence of the transformation mechanism, but the parameters contributing to the ductility of those microstructures are still unclear in this type of microstructures, where a soft phase, retained austenite, is imbibed in a very strong matrix of bainitic ferrite. A priori is reasonable to assume that retained austenite will control the levels of ductility achieved. Further enhancement of ductility can be achieved by the transformation of retained austenite into martensite (strain or stress assisted), thus its mechanical stability plays an important role in the final ductility. In this study, by means of X-ray analysis of interrupted compression tests, it is studied the influence that different microstructural aspects of retained austenite may have on its mechanical stability.  相似文献   

6.
The microstructural evolution and precipitation behaviour of Nb-V-Mo and single V containing transformation-induced plasticity-assisted steels with an acicular/bainitic ferrite matrix were investigated by a heat treatment up to the austenite formation range. It was found that during the heating stage the acicular/bainitic ferrite matrix resisted recrystallisation, while cementite and martensite were decomposed and austenite was formed in the acicular/bainitic ferrite. Both Nb-V-Mo and V containing steels after the heat treatment showed a microstructure consisting of a polygonal ferrite matrix with small islands of pearlite. During these transformations, the microscopy observations showed that 0.04 wt% Nb and 0.08 wt% Mo additions to the 0.16 wt% V microalloyed steel considerably reduced the growth-coarsening of microalloy precipitates.  相似文献   

7.
采用X射线衍射(XRD)、透射电镜(TEM)和拉伸实验等方法,研究三种工艺制备的热轧TRIP钢残余奥氏体及其碳含量和稳定性.结果显示:贝氏体区停留时间对残余奥氏体量影响较大,当在贝氏体区模拟卷取时,残余奥氏体量最多;适当的增加弛豫时间,会增加最终组织中残余奥氏体的碳含量;残奥碳含量,还有残余奥氏体的形状和晶粒大小及周围...  相似文献   

8.
A Fe-based coating with nano-scale bainitic microstructure was fabricated using laser cladding and subsequent isothermal heat treatment. The microstructure of the coating was observed and analyzed using optical microscope (OM), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The results showed that nanostructured bainitic ferrite and carbon-enriched retained austenite distributed uniformly in the coating. Blocky retained austenite was confined to the prior austenite grain boundaries resulting from the elements segregation. The bainitic microstructure obtained at 250 °C had a finer scale compared with that obtained at 300 °C. The volume fraction of austenite increased with increasing transformation temperature for the fully transformed bainitic coating. The bainitic transformation was accelerated as a result of the fine prior austenite generated during the laser cladding. The evolution of the carbon contents in bainitic ferrite and retained austenite revealed the diffusionless mechanism of the bainitic transformation.  相似文献   

9.
新型贝氏体钢的组织和冲击疲劳性能研究   总被引:2,自引:0,他引:2  
通过显微组织观察和冲击疲劳实验,研究了不同热处理新型贝氏体钢的组织和冲击疲劳性能.结果表明:新型贝氏体钢正火低温回火的组织由贝氏体铁素体和奥氏体组成,淬火低温回火组织为回火马氏体和残余奥氏体,正火低温回火热处理的冲击疲劳寿命高于淬火低温回火热处理的冲击疲劳寿命.分析了多冲疲劳裂纹扩展的行为,讨论了正火低温回火提高冲击疲劳的原因.  相似文献   

10.
ABSTRACT

A high silicon cast steel was studied in the as-cast condition in order to characterise its solidification macrostructure and microsegregation. The steel, poured into 32?mm-keel-block-shaped moulds, has a coarse solidification structure and marked microsegregation, containing low-alloyed areas with a total alloy content (Cr?+?Mn?+?Si) of 2.3 wt-% and high-alloyed zones of 5.3 wt-%. The bainitic transformation behaviour at 300°C was studied at different austempering times. The bainitic reaction occurs at different rates within the specimen volume, because of its chemical heterogeneity. An austempering heat treatment leads to an inhomogeneous carbide-free bainitic microstructure with different phase amounts, morphologies and sizes. The heterogeneous distribution of sizes and chemical compositions of retained austenite is speculated to benefit mechanical properties.  相似文献   

11.
The retained austenite (RA) characteristics of Al‐containing TRIP700 steels have been manipulated using varying bainitic isothermal transformation (BIT) processing. The microstructural evolution was investigated using optical microscopy and quantitative image analysis, while the amount of transformed RA was evaluated with the saturation magnetization (SM) technique. Cyclic behavior is found to depend on the applied strain amplitude and stability of RA. At strain amplitudes with comparable elastic and plastic strain components, cyclic softening prevails, facilitated by more stable RA microstructures and Low Cycle Fatigue (LCF) performance benefits from a lower RA stability, which controls the amount of cyclic softening rate. With increasing plastic strain component, a transition to cyclic hardening is observed, and the transition strain increases with increasing RA stability. LCF performance deteriorates because of excessive cyclic strain hardening promoting martensitic transformation. The effect is accompanied by a transition from mixed dimple/cleavage to cleavage‐type fracture characteristics.  相似文献   

12.
The effects of austempering temperature and isothermal transformation time on fatigue crack growth rate in a ductile iron with a bainitic structure have been studied. Crack growth rates in austempered samples were compared with those in materials with a ‘bullseye’ casting structure. Using scanning electron microscopy, the mechanism of the fatigue crack growth can be understood by observing the fracture surface of a fatigue specimen. X-ray diffractometry was used to determine the volume fraction of retained austenite. It can be concluded that the volume fraction of retained austenite, the fracture mode and the matrix microstructure are closely related to the fatigue crack propagation rate and the fracture mode.  相似文献   

13.
Transformation-induced plasticity (TRIP)-aided bainitic ferrite steels developed for automotive applications have attractive mechanical properties such as ductility, formability, toughness, fatigue strength and delayed fracture strength. These mechanical properties are principally associated with a ductile lath-structure matrix and the strain-induced transformation of the metastable-retained austenite films of 3–20 vol.%. In this paper, data on the microstructural and mechanical properties of the low-carbon TRIP-aided bainitic ferrite steels are critically assessed, as well as their deformation mechanism.  相似文献   

14.
High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.  相似文献   

15.
The abrasion wear resistance and wear mechanism of super bainitic steel austempered at different temperatures and time have been investigated by two-body abrasion testings, scanning electron microscopy, X-ray diffraction, transformation electron microscopy and electron backscattering diffraction. The results show that the two-body abrasion wear mechanism is predominantly micro-ploughing abrasion, and the wear resistance is decreased with increasing isothermal temperature which is attributed to the decreased hardness caused by a higher retained austenite content and the coarsening of the microstructure. The sample austempered at 230°C for 2?h with the higher amount of retained austenite and lower carbon concentration exhibits excellent wear resistance, and the transformation induced plasticity effect is observed during wear process which is beneficial for the improving of hardness and wear resistance.  相似文献   

16.
The effect of hydrogen on the upper bainite transformation in two silicon containing steels has been investigated. For comparison, isothermal transformation at the same temperature has also been performed in a helium atmosphere. In both Fe-0.2C-3Mn-2Si and Fe-0.4C-4Ni-2Si (nominal wt %) alloys it was discovered that the bainite reaction proceeds further towards completion when the transformation is carried out in a hydrogen atmosphere. This can result in the reduction or elimination of the martensite phase which forms from residual austenite upon quenching to room temperature. The resultant microstructure of specimens heat treated in hydrogen was a fine aggregate of upper bainitic ferrite and interlath retained austenite. This effect is discussed in terms of hydrogen interactions in the lattice undergoing bainite transformation via a displacive mechanism. Additionally, it is found that the stability of the retained austenite in the final bainitic microstructure is not markedly influenced by hydrogen.  相似文献   

17.
Retained austenite may play a role in the hydrogen embrittlement process because austenite has much higher hydrogen solubility than martensite has. The effect of the retained austenite on hydrogen cracking was investigated by tensile testing of standard round bar specimens that had been heat treated in order to achieve different levels of retained austenite. A significant effect of the retained austenite was observed. Samples with high amounts of retained austenite experienced a much higher reduction in ductility after hydrogen charging than samples with low amounts of retained austenite. In order to explain this effect, the hydrogen solubility of samples containing different levels of austenite and precipitates was measured. This was achieved by charging the samples to saturation in an electrolyte and performing hydrogen analysis.  相似文献   

18.
A local electrode atom probe has been used to analyze the solute partitioning during bainite transformation in a novel, nanocrystalline bainitic steel. Atom probe results show the absence of any partitioning of substitutional elements between the phases involved. The results are fully consistent with the diffusionless transformation of austenite to bainite. However, substitutional elements are expected to redistribute approaching an equilibrium phase boundary as the mixture of bainitic ferrite and retained austenite is tempered. The compositional analysis of the austenite/ferrite interface by atom probe tomography indicates that retained austenite decomposes during tempering before equilibrium is reached at the interface.  相似文献   

19.
A new hot-rolled alloy of carbide-free bainite has been proposed for heavy trucks frames. It involves dynamic bainite transformation during the prolonged cooling of the coiling process after hot-rolling. The new hot-rolled Fe-0.5C-2.9Mn-2.3Al (in wt-%) steels exhibit tensile strength of 1110?MPa with a combined total elongation of 35%. The alloy has been re-heat-treated with one step and two steps isothermal bainitic transformation to study the effect of microstructure evolution and microstructure-property relationship. The transformation-induced plasticity (TRIP) effect of retained austenite has been discussed and revealed as the main contributor for the high ductility of bainitic steels. The formation of the cracks at fracture regions after tensile deformation, which is associated with the austenite stability and morphology, has been observed and discussed.  相似文献   

20.
Abstract

A detailed microstructural characterization of two silicon-containing low-alloy steels, Fe–0·2C–2Si–3Mn and Fe–0·4C–2Si–4Ni (nominal wt-%), isothermally transformed in the bainitic temperature range (~ 400–250°C), has been carried out using principally electron microscopy, X-ray diffraction, and dilatometry. Upper bainite in these silicon-containing steels consists of bainitic ferrite laths and interwoven thin films of retained austenite instead of cementite. Coarser granular regions of retained austenite may also be obtained. The bainitic ferrite laths (or plates) in lower bainitic structures contain intralath carbides, but the interlath morphology of retained austenite still occurs. The variations in these microstructures with isothermal transformation temperature, and the thermal stability of the retained austenite phase is described and discussed.

MST/526  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号