首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbide-free and carbide-bearing bainitic steels have been obtained. The relationship between the bainitic microstructure and wear resistance has been studied. Results show that carbide-free upper and lower bainitic microstructures obtained in the steel with Si?+?Al mainly consist of bainitic ferrite and retained austenite. Carbide-bearing upper and lower bainitic microstructures obtained in the steel without Si?+?Al consist of bainitic ferrite, carbide and trace amounts of retained austenite. The carbide-free bainite exhibits higher strength and toughness than carbide-bearing bainite, especially the toughness. Under lower wear loading, carbide-bearing lower bainite (LB) exhibits higher wear resistance. Under higher wear loading, carbide-free LB exhibits higher wear resistance, which results from the improved surface hardness due to strain-induced martensitic transformation from the retained austenite.  相似文献   

2.
A new hot-rolled alloy of carbide-free bainite has been proposed for heavy trucks frames. It involves dynamic bainite transformation during the prolonged cooling of the coiling process after hot-rolling. The new hot-rolled Fe-0.5C-2.9Mn-2.3Al (in wt-%) steels exhibit tensile strength of 1110?MPa with a combined total elongation of 35%. The alloy has been re-heat-treated with one step and two steps isothermal bainitic transformation to study the effect of microstructure evolution and microstructure-property relationship. The transformation-induced plasticity (TRIP) effect of retained austenite has been discussed and revealed as the main contributor for the high ductility of bainitic steels. The formation of the cracks at fracture regions after tensile deformation, which is associated with the austenite stability and morphology, has been observed and discussed.  相似文献   

3.
High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.  相似文献   

4.
Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.  相似文献   

5.
Abstract

A detailed microstructural characterization of two silicon-containing low-alloy steels, Fe–0·2C–2Si–3Mn and Fe–0·4C–2Si–4Ni (nominal wt-%), isothermally transformed in the bainitic temperature range (~ 400–250°C), has been carried out using principally electron microscopy, X-ray diffraction, and dilatometry. Upper bainite in these silicon-containing steels consists of bainitic ferrite laths and interwoven thin films of retained austenite instead of cementite. Coarser granular regions of retained austenite may also be obtained. The bainitic ferrite laths (or plates) in lower bainitic structures contain intralath carbides, but the interlath morphology of retained austenite still occurs. The variations in these microstructures with isothermal transformation temperature, and the thermal stability of the retained austenite phase is described and discussed.

MST/526  相似文献   

6.
Several Si-Mn steels with similar Si and Mn levels and carbon contents, ranging from 0.25 to 0.75 wt %, were studied to determine the effect of bainitic transformation on the microstructure of Si-Mn steel. The microstructure was categorized by optical metallography, scanning and transmission electron microscopy, and X-ray diffraction. The results showed the existence of an optimum transformation time to produce the maximum content of retained austenite, though the retention of a large amount of retained austenite was encouraged as a result of bainitic transformation. The microstructure consisted of carbon-free upper bainite whose individual ferrite was separated by the thin-film type of retained austenite, while the blocky type of austenite was also found. The results also showed that carbide precipitation occurred in the residual austenite after the optimum time, which decreased the retained austenite content. The retained austenite stability is discussed in relation to the carbon content and morphology of the retained austenite.  相似文献   

7.
We elucidate here the role of isothermal hold temperature of 300–500°C after intercritical annealing at 760°C on bainitic transformation and in governing the stabilisation of retained austenite in a 0.23C-1.35Si-1.82Mn steel. A critical analysis was attempted to explain the observations using displacive mechanism of bainite formation in the attempt to endeavour to understand the kinetics of bainitic transformation during isothermal holding. The model predicted that carbon enrichment in austenite was of particular significance in governing the stability of retained austenite. Thus, through the contribution of transformation induced plasticity effect of retained austenite, high tensile strength (964?MPa) and excellent ductility (uniform elongation of 24.5% and total elongation of 32%) was obtained on isothermal holding at 400°C.  相似文献   

8.
采用光学显微镜和扫描电子显微镜等技术手段观察了经1100℃奥氏体化的9Cr2Mo钢在不同温度的盐浴中等温淬火后贝氏体的组织形貌。结果表明:9Cr2Mo钢1100℃奥氏体化后,在410℃的硝盐浴中等温得到羽毛状的经典上贝氏体组织,在350℃的硝盐浴中等温得到针状(或片状)的下贝氏体组织;上贝氏体铁素体铁素体是在奥氏体晶界处形核并向晶内生长,碳化物在铁素体条间分布;下贝氏体是在奥氏体晶内形核,碳化物分布在铁素体片中间,碳化物大多数与片条的主轴方向交角排列,但角度不等。  相似文献   

9.
A comparative study was conducted to assess the effects of two different heat treatments on the amount and morphology of the retained austenite in a micro/nano-structured bainitic steel. The heat treatments used in this work were two-stage bainitic transformation and bainitic-partitioning transformation. Both methods resulted in the generation of a multi-phase microstructure containing nanoscale bainitic ferrite, and/or fresh martensitic phases and much finer retained austenite. Both heat treatments were verified to be effective in refining the retained austenite in micro/nano-structured bainite and increasing the hardness. However, the bainitic transformation followed by partitioning cycle was proved to be a more viable approach than the two-stage bainitic transformation due to much shorter processing time, i.e. ~2?h compared to ~4 day, respectively.  相似文献   

10.
11.
为研究合金元素含量对钢中贝氏体铁素体长大动力学的影响,采用Zener-Hillert和Bosze-Trivedi动力学模型,通过选取热力学和动力学参数,计算了合金成分不同的钢的片层状贝氏体铁素体长大速度.研究表明:Fe-0.59C、Fe-0.81C和Fe-0.478C-4.87Ni合金在贝氏体相变时,贝氏体铁素体长大速度可以用无分配局部平衡条件下的扩散模型很好地描述,Fe-0.69C-1.8Ni-0.8Mo合金贝氏体铁素体长大速度略慢于理论值,Fe-C-8.7Ni合金贝氏体铁素体的长大速度比理论值约慢2个数量级;合金元素含量高的钢的贝氏体铁素体长大速度无法用扩散控制模型很好地描述;结合对贝氏体相变机制的讨论,提出贝氏体相变机制可能与相变温度和钢的成分相关.  相似文献   

12.
Scanning tunneling microscopy (STM ) has been first employed to study the surface relief accompanying bainite transformation in a Fe-2.17C-12.18Cr-0.31Si-0.26Mn (wt pct) steel. With the exclusive vertical resolution of STM, we observed that the surface relief associated with bainite is a group of surface reliefs related to subplates, subunits and sub-subunits. As a whole, the relief group is in a tent shape, not of invariant plane strain (IPS) type, which is obviously different from that of martensite, and implying that bainite is not formed by shear mechanism. The fine structure of bainite in Fe-1.0C-4Cr-2.0Si (wt pct) alloy has also been studied with STM and TEM. It is found that the bainite plate is composed of subplates, subunits and sub-subunits. On the basis of the fine structure inside a bainitic ferrite plate observed under STM, a sympathetic-ledgewise mechanism of bainite formation is proposed  相似文献   

13.
The effects of deformation temperature on phase transformation and microstructure in nanostructured bainite steel were studied. The results indicate that the deformed austenite with a strain of 0.3 at 300°C presents accelerated kinetics of bainitic transformation. However, the amount of bainite in ausformed austenite then reduces with the increase in deformation temperature. A critical deformation temperature, determining whether the bainitic transformation can be promoted, was found in deformed austenite. In addition, the thickness of bainite plate in deformed austenite reduces with the decrease in ausforming temperature. The adjacent bainite ferrite plates grow up interactively, and the intersection angle is about 60–73°. A lower ausforming temperature contributes to a more serious cross-growth phenomenon of bainite plates.  相似文献   

14.
A local electrode atom probe has been used to analyze the solute partitioning during bainite transformation in a novel, nanocrystalline bainitic steel. Atom probe results show the absence of any partitioning of substitutional elements between the phases involved. The results are fully consistent with the diffusionless transformation of austenite to bainite. However, substitutional elements are expected to redistribute approaching an equilibrium phase boundary as the mixture of bainitic ferrite and retained austenite is tempered. The compositional analysis of the austenite/ferrite interface by atom probe tomography indicates that retained austenite decomposes during tempering before equilibrium is reached at the interface.  相似文献   

15.
The possible influence of banded microstructure on the fracture performance of a high-carbon steel is investigated using electron microscopy and X-ray diffraction techniques. The banded microstructure was found to be alternating layers of bainite and tempered martensite/retained austenite. Transformation of bainite was promoted by a combined effect of segregation of alloying elements, non-uniform thermal gradient across the steel, and the insufficient austenitisation. The transformation of bainite along the prior austenite grain boundaries (PAGBs) introduces a non-uniform strain distribution at bainite/martensite interface and a higher stress concentration, which may eventually lead to the failure of the heavy section in a brittle intergranular manner. Results provide insights to the importance of understanding the bainitic transformation in such eutectoid steel systems.  相似文献   

16.
17.
Heat-treatment processes to obtain carbide-free upper bainite, low bainite and low-temperature bainite in the 34MnSiCrAlNiMo medium-carbon steel were explored. Results show that in the steel bainite transformation mainly goes through three stages: short incubation, explosive nucleation and slow growth. When transformation temperature, T > Ms + 75 °C, upper bainite consisted of catenary bainitic ferrite and blocky retained austenite is obtained in the steel. When Ms + 10 °C < T < Ms + 75 °C, lower bainite is the main morphology composed of lath-like bainitic ferrite and flake-like retained austenite. When T < Ms + 10 °C, the lower bainite, also known as low-temperature bainite, is obtained, which contains much thinner lath-like bainitic ferrite and film-like retained austenite. Mechanical testing results show that the lower the transformation temperature is, the better comprehensive performance is. The low-temperature bainite has the very high tensile strength and impact toughness simultaneously. The lower bainite has lower tensile strength and higher impact toughness. The upper bainite has higher tensile strength and lower impact toughness. The big difference of the mechanical performance between these kinds of bainite is mainly caused by interface morphology, size, and phase interface structure of the bainitic ferrite and the retained austenite. Additionally, when the bainite transformation temperature is decreased, the high-angle misorientation fraction in packets of bainite ferrite plates is increased. High-angle misorientation between phase interfaces can prevent crack propagation, and thus improves impact toughness.  相似文献   

18.
Abstract

The effect of austenite grain size on isothermal bainite transformation in a low carbon microalloyed steel was studied by means of optical microscopy, SEM and TEM. Two widely varying austenite grain sizes, a fine average grain size (~20 μm) and a coarse average grain size (~260 μm), were obtained by different maximum heating temperatures. The results showed that the morphology of isothermal microstructure changes from bainite without carbide precipitation to bainitic ferrite with a decrease in holding temperature. Coarse austenite grain can retard the kinetics of bainite transformation and increase the incubation time of bainite transformation by reducing the number of nucleation site, but it does not influence the nose temperature of the C curve of bainite start transformation, which is ~534°C.  相似文献   

19.
Effects of austenisation temperature on martensite and bainite transformation behaviour, microstructure, and mechanical properties of a bainitic steel austempered below martensite starting temperature were investigated in this study. Results show that the amount of athermal martensite gradually increased with the increase of austenisation temperature, whereas the amounts of bainite and retained austenite initially increased and then decreased, resulting in the trend of the first increase and then decrease in the product of tensile strength and elongation. In addition, the transformation rate of isothermal bainite after athermal martensite formation revealed a trend of deceleration and then acceleration with austenisation temperature at the beginning period. Moreover, the size of bainite plates decreased first and then increased with austenisation temperature.  相似文献   

20.
The properties of the products of isothermal transformation of undercooled austenite into bainite in unalloyed ductile cast iron were investigated using X-ray diffraction. The following parameters were investigated: the fraction of austenite in the cast iron matrix, the crystal lattice parameter, and the width of the diffraction lines of the α and γ phases. The structures were studied using a TEM. It was observed that the temperature TA and time τA of the isothermal transformation significantly influence the nature of the α and γ phases. The transformations are determined by the diffusion of carbon, and the maximum carbon content is approximately twice the equilibrium carbon content at the austenitising temperature. The lattice parameter of the α phase in the range of TA studied decreases with increasing cooling time but increases in the upper bainite range. The increase in this lattice parameter results from the typical process of bainitic transformation during the retained austenite eutectoidal reaction (stage III). The crystal structure of the γ phase in the upper bainitic region is more perfect than in the lower range. Within the investigated temperature range of TA, bainitic ferrite continually improves its crystal structure.

MST/3104  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号