首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
纳米TiO2掺杂对低密度聚乙烯空间电荷行为的影响   总被引:1,自引:0,他引:1  
本文利用压力波法(PWP)研究了低密度聚乙烯(LDPE)以及掺杂0.5%(质量分数)TiO2的低密度聚乙烯在高电场下的空间电荷分布及其等温衰减特性,结合红外光谱(IR)、扫描电镜(SEM)和热刺激电流(TSC)谱研究了掺杂前后的微观形貌和陷阱能级的变化.结果表明,掺杂改变了电荷的注入和积累分布;其精细结构产生了较深的陷阱能级,这对聚乙烯高压电力电缆中电树枝的引发和生长的抑制有应用价值.  相似文献   

2.
通过热处理方法得到表面不含羟基(—OH)的纳米MgO颗粒, 采用母料法制备了10wt% 纳米MgO/低密度聚乙烯(LDPE)复合材料, 研究了纳米MgO/LDPE复合材料在70 kV/mm直流电场下的空间电荷特性, 评估了该方法对纳米颗粒分散的效果及工业化应用推广价值。结果表明:表面羟基化对纳米MgO/LDPE复合材料变温体积电阻率及介电特性的影响不大, 空间电荷积累量增加。当纳米MgO 掺杂量为1wt%时, 复合材料的电性能最佳。   相似文献   

3.
利用熔融共混法制得不同纳米SiC质量分数(0.5%、2.0%、3.0%)的纳米SiC/低密度聚乙烯(LDPE)复合材料,研究了添加纳米SiC颗粒对LDPE介电性能的影响。利用SEM观测了纳米SiC颗粒的分散特性,利用电声脉冲(PEA)法测得40 kV/mm场强作用下纳米SiC/LDPE复合材料的空间电荷分布特性。利用热刺激电流(TSC)进一步验证纳米SiC添加能够提高LDPE的陷阱浓度。结果表明:纳米SiC颗粒能够均匀地分散在LDPE中,未出现较大的团聚现象。纳米SiC质量分数为0.5%、2.0%和3.0%的纳米SiC/LDPE复合材料空间电荷注入量明显低于LDPE。短路600 s后的残留空间电荷密度远小于LDPE。纳米SiC/LDPE复合材料的空间电荷注入量与电导率均随着纳米SiC的增加而减少。纳米SiC质量分数为3.0%的纳米SiC/LDPE复合材料场强非线性系数为2.6,远小于LDPE的4.3。TSC曲线表明纳米SiC/LDPE复合材料内部制造了大量的陷阱,抑制了载流子在材料内部的输运,从而阻碍了空间电荷的迁移和积聚。   相似文献   

4.
电极材料对聚乙烯中空间电荷注入影响的比较   总被引:1,自引:0,他引:1  
将低密度聚乙烯(LDPE)热压成0.5mm左右厚的薄片,在其两侧热压上或者镀上电极,再加+40kV高压和-40kV高压注入电荷,采用压力波(PWP)法测量注入过程的空间电荷分布,并对测量数据进行定性和定量的比较,旨在对采用不同电极材料(高聚物半导电电极、铝、金、铜等金属电极)的低密度聚乙烯电荷注入进行较为系统的比较和总结,并对注入机理进行探讨。实验结果证明这几种金属电极材料的逸出功越大则越不利于空间电荷注入。  相似文献   

5.
LDPE/SiO2保鲜膜保鲜果蔬   总被引:4,自引:3,他引:1  
为了更有效的保鲜新鲜水果,鉴于低密度聚乙烯薄膜(LDPE)存在的缺点,采用无机矿物二氧化硅(SiO2)填充LDPE薄膜包装新鲜果蔬.试验结果表明LDPE/SiO2膜能有效的抑制果蔬的呼吸强度、延缓果蔬衰老,具有良好的保鲜效果.  相似文献   

6.
通过熔融混合将有机杂环磷酸酯1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸酯基)苯(FR)和聚磷酸铵(APP)组成的膨胀阻燃剂(IFR)与低密度聚乙烯(LDPE)作用,制备出新型膨胀阻燃低密度聚乙烯复合材料(IFR/LDPE)。用差示扫描量热法(DSC)研究IFR对LDPE非等温结晶行为的影响,用Jeziorny法、Ozawa法及莫志深法研究了低密度聚乙烯阻燃改性前后的非等温结晶动力学,并用Kissinger法、Takhor法研究了纯LDPE及IFR/LDPE共混体系结晶活化能的变化。结果表明:IFR的加入在提高LDPE阻燃性能的同时,对LDPE结晶起到异相成核作用,但是阻碍了PE分子链的规则排列,使LDPE晶体的生长减慢,最终使阻燃聚乙烯总的结晶速率降低。  相似文献   

7.
分别采用添加纳米ZnO和纳米蒙脱土(MMT)粒子的方法提高低密度聚乙烯(LDPE)的介电性能,选择偶联剂对纳米粒子进行表面修饰,并利用熔融共混法制备了纳米ZnO/LDPE和纳米MMT/LDPE复合材料,通过XRD、FTIR和DSC对试样进行表征。研究了复合材料的交流击穿特性,对试样进行了空间电荷试验。结果表明:通过偶联剂修饰,纳米粒子与聚合物之间的界面结合得到改善,且纳米粒子在基体中的分散性更好;同时复合材料的结晶速率提高,结晶结构更完善;添加纳米粒子可以不同程度地提高LDPE的击穿场强,当纳米ZnO和纳米MMT的质量分数均为3wt%时,复合材料的击穿场强达到最大,分别比纯LDPE的击穿场强高出11.0%和10.3%;纳米ZnO和纳米MMT都有抑制空间电荷的作用,且ZnO的抑制效果更明显。  相似文献   

8.
SiO2/低密度聚乙烯(LDPE)复合材料的介电性能与纳米SiO2在LDPE基体中的分散性密切相关。为研究室温下拉伸处理对纳米SiO2颗粒在LDPE基体中分散性的作用机制,本文选取7 nm粒径的疏水型纳米SiO2与LDPE熔融共混制备SiO2/LDPE纳米复合材料。将制备好的纳米复合材料经过三次拉伸处理,利用SEM、DSC表征纳米粒子的分散性及复合材料的结晶度,利用热刺激电流法(TSC)测试分析复合材料的陷阱能级和陷阱密度。通过对纳米复合材料的空间电荷,电导电流,直流击穿强度进行实验测试,研究了拉伸对纳米粒子分散性的影响及其所导致的直流介电性能的改变。结果表明室温下拉伸有助于纳米粒子的分散,使纳米SiO2粒子的团聚尺寸从200 nm左右缩减到100 nm左右;但拉伸会破坏LDPE的结晶结构,劣化其性能;通过掺杂纳米SiO2引入深陷阱能级可以改善LDPE的直流介电性能。经过拉伸的SiO2/LDPE的空间电荷积累得到...  相似文献   

9.
高压直流绝缘材料中空间电荷积聚限制了直流输电的发展。为探讨微米SiO_2、纳米SiO_2、微纳米SiO_2及制备工艺对SiO_2/低密度聚乙烯(LDPE)复合材料空间电荷特性的影响。分别利用SEM、FTIR和DSC等对不同SiO_2/LDPE复合材料的微结构、结晶特性等进行了表征,利用热刺激电流(TSC)法研究其陷阱特性,通过电声脉冲(PEA)法研究其空间电荷特性。结果表明:SiO_2的引入使LDPE的晶粒尺寸减小,结晶度提高;SiO_2/LDPE复合材料的TSC曲线所包络面积增大,微米SiO_2的引入使TSC峰向低温方向偏移,而纳米SiO_2的引入使TSC峰向高温方向移动;SiO_2/LDPE复合材料表现出对空间电荷不同程度的抑制作用。微纳米SiO_2/LDPE复合材料的制备工艺对其性能有一定的影响,以母料形式制备微纳米SiO_2/LDPE复合材料时,其性能与后加入无机颗粒对应的SiO_2/LDPE复合材料更接近。  相似文献   

10.
利用同向平行双螺杆挤出机对纳米SiO2/低密度聚乙烯(LDPE)复合材料进行深度混炼,采用SEM、直流击穿强度试验及变温空间电荷试验研究了该工艺对纳米SiO2/LDPE复合体系中纳米SiO2颗粒分散性、直流击穿强度和空间电荷特性的影响,综合评估了纳米SiO2颗粒分散性改善和纳米SiO2/LDPE复合材料熔融状态下机械剪切降解对电性能的影响。结果表明,随着混炼次数的增加,纳米SiO2颗粒在LDPE中分散的更加均匀;深度混炼与单次混炼相比,SiO2/低密度聚乙烯复合材料直流击穿强度上升,室温下达到433.1 kV/mm;随着混炼次数的增加,SiO2/低密度聚乙烯复合材料低温时抑制空间电荷能力变强,但60℃以上高温时抑制能力变差。混炼次数的增加改善了纳米SiO2颗粒的分散性,使其与LDPE基体的界面增多,同时,纳米SiO2颗粒还使SiO2/低密度聚乙烯复合材料的片晶厚度增大,结晶度升高,界面区和力学性能都随着分散性改善而增加和增强,两者共同促进了SiO2/低密度聚乙烯复合材料电学性能的改善。但是由于深度混炼引发了材料降解,结构缺陷的增多影响了纳米SiO2/LDPE复合材料高温区的空间电荷抑制性能。  相似文献   

11.
选择在低密度聚乙烯(LDPE)中掺杂无机纳米ZnO和蒙脱土(MMT)颗粒,探讨不同形态无机纳米颗粒对LDPE介电性能的影响。利用熔融共混法配合不同冷却方式制备不同结晶形态的纳米ZnO/LDPE和MMT/LDPE复合材料。通过FTIR、偏光显微镜(PLM)、SEM、DSC和热刺激电流(TSC)对试样进行表征,并。研究了纳米ZnO/LDPE和MMT/LDPE复合材料的交流击穿特性,结果表明:掺杂适当质量分数并经表面修饰的无机纳米颗粒可有效的避免其团聚现象,提高纳米ZnO/LDPE和MMT/LDPE复合材料的结晶速率,使结晶结构更完善,同时无机纳米颗粒掺杂使LDPE的陷阱密度和深度均有所增加,载流子入陷在试样内部形成界面"局域态"。经油冷却方式制备的纳米ZnO/LDPE和MMT/LDPE复合材料击穿场强比空气自然冷却分别高13.6%和14.4%,当掺杂纳米粒子质量分数为3wt%时,复合材料击穿场强出现最大值,其中纳米ZnO/LDPE复合材料比MMT/LDPE复合材料的击穿场强值高0.68%;电导率试验结果表明:纳米ZnO/LDPE复合材料电导率比MMT/LDPE复合材料低。介电性能测试表明,在1~105 Hz的测试频率范围内,纳米ZnO/LDPE复合材料和MMT/LDPE复合材料介电常数降低,介质损耗角正切值有所提高。  相似文献   

12.
以低密度聚乙烯(LDPE)为聚合物基体,通过熔融共混的方式填充不同粒径的纳米SiO2无机颗粒,制备纳米SiO2/LDPE复合材料,研究提高聚乙烯电绝缘性能的纳米改性方法和机制。利用SEM表征纳米SiO2在LDPE基体中的微观形态和分散程度,采用DSC和偏光显微镜(PLM)分析纳米SiO2对LDPE基体结晶度和结晶形态的影响,通过热刺激电流法(TSC)分析纳米SiO2/LDPE复合材料的陷阱密度和陷阱能级,并结合电击穿的Weibull分布研究纳米复合材料的击穿机制。研究结果表明:纳米SiO2填充可以改变复合材料结晶度,进而增加LDPE基体本征结构缺陷和陷阱密度,同时填充纳米SiO2颗粒可引入比LDPE基体本征陷阱更深的陷阱能级,纳米SiO2填充颗粒引入的陷阱能级深度随着复合材料结晶度的增加而先增大后减小,填充浓度3wt%时可最有效地通过俘获载流子而抑制电击穿过程,纳米SiO2/LDPE复合材料的击穿场强达到最高值。与60 nm SiO2颗粒相比,30 nm SiO2填充颗粒具有更高的比表面积,界面电极化导致更高的介电常数,更高密度的纳米界面深陷阱态对于提高电击穿场强更有效。当填充浓度为5wt%时,纳米颗粒的团聚作用导致纳米复合材料的击穿强度降低。基于电双层理论提出了电子捕捉模型和界面结构模型,合理阐释了纳米SiO2/LDPE复合材料的微观陷阱特性及宏观电击穿机制。   相似文献   

13.
为探讨纳米ZnO/低密度聚乙烯(LDPE)复合材料的介电特性,首先,采用硅烷偶联剂和钛酸酯偶联剂对纳米ZnO进行改性,并利用两步法制备了不同纳米ZnO质量分数、不同纳米ZnO粒径、不同纳米ZnO表面修饰方式和不同冷却方式的纳米ZnO/LDPE复合材料;然后,通过FTIR、SEM、DSC和热激电流(TSC)测试了纳米ZnO在基体中的分散情况、复合材料的等温结晶过程参数变化及陷阱密度;最后,在不同实验温度下分别进行了交流击穿、绝缘电导率、介电常数和空间电荷实验。结果表明:纳米ZnO的加入使纳米ZnO/LDPE复合材料内部陷阱深度和密度均有所增加;当纳米ZnO的粒径为40 nm且质量分数为3%时,复合材料的结晶速度最快,纳米ZnO在基体中的分散性较好,击穿场强达到最高值133.3 kV/mm,电导率及介电常数也相对较低,加压时复合材料内部空间电荷少,短路时释放电荷速度快,介电性能较好;由于纳米粒子增加了材料内部的热传导速率,降低了复合材料随着温度升高而降解的速度,因而相对于纯LDPE,随着实验温度的提高,纳米ZnO/LDPE复合材料的击穿场强下降幅度及电导率上升幅度均较小。   相似文献   

14.
Y和YF3掺杂钛酸钡系PTCR材料的结构及性能   总被引:1,自引:0,他引:1  
在不同烧结气氛下制备了Y和YF掺杂钛酸钡材料,借助于XRD、SEM、XRF和阻温测试分析仪,研究了烧结气氛对Y和YF掺杂钛酸钡材料结构和性能的影响.研究结果表明,低氧分压气氛可促进Y和YF掺杂钛酸钡材料的烧结,晶粒长大,而且这二种掺杂钛酸钡材料都是n型半导体.经过氩气气氛烧结的Y掺杂钛酸钡材料PTCR效应较弱;而对在氩气气氛中烧结的0.3mol%YF掺杂钛酸钡材料却观察到了较好的PTCR效应,这种效应的产生可能与F元素取代O位而导致材料的价控半导有关.  相似文献   

15.
氢氧化镁是一种重要的无机环保阻燃材料,本文分别以乙醇和水作为硅烷偶联剂的溶剂,采用减压蒸馏法对氢氧化镁进行表面硅烷化改性,并将改性的氢氧化镁添加到低密度聚乙烯(LDPE)中,通过活化指数、FT-IR、SEM、TGA等表征了改性氢氧化镁理化性能以及在LDPE中的阻燃性能。结果表明,水和乙醇作为硅烷偶联剂溶剂能取得相同的改性效果。硅烷偶联剂能与Mg(OH)2发生接枝反应形成Mg-O-Si键,当其用量为氢氧化镁质量的0.6%时,活化指数达到97%以上。SEM和TGA显示改性后的氢氧化镁在LDPE材料中具有良好的分散性和相容性,并明显延缓了LDPE热分解速率,表现出优异的阻燃性能。  相似文献   

16.
首次研究了以Nd~(3+)离子为辅助激活剂,对Eu~(2+)掺杂的发光材料Sr_4Al_(14)O_(25):Eu~(2+)余辉性能的影响.用溶胶凝胶法合成了Eu~(2+), Nd~(3+)共掺杂的Sr_4Al_(14)O_(25):Eu~(2+),Nd~(3+)发光粉末,并用扫描电镜、X射线衍射计、荧光分光光度计、余辉亮度测试仪、热释光剂量计等手段对粉末样品进行了表征.结果表明,在1350℃得到了单一的Sr_4Al_(14)O_(25)相,粉末颗粒平均粒度在1μm左右.Eu~(2+), Nd~(3+)共掺杂的Sr_4Al_(14)O_(25):Eu~(2+),Nd~(3+)发光粉末有402和485nm两个发射峰,与Eu~(2+)单掺杂的Sr_4Al_(14)O_(25):Eu~(2+)相比,发射峰位置没有变化,但适量的掺杂可以大大提高余辉时间和余辉亮度,余辉时间可达18h以上.最后通过对热释光谱的分析解释了双掺杂发光粉余辉性能增强的原因,适宜深度的陷阱可以有效存储光能,增强余辉的时间和强度.  相似文献   

17.
Time resolved thermoelectric effects (TTE) were used to simultaneously determine trap levels and trap state density differences in amorphous (a-Si:H) samples. In particular, the trap state density differences are obtained from the decay of the ambipolar charge distribution, i.e. stage 2 of the TTE transients. The trap state difference density is measured under hydrostatic pressures, up to 2.2 kbar. The trap state density difference changes from a negative peak to a positive peak with increasing hydrostatic pressure, suggesting a significant pressure induced shift of the electron and hole trap levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号