首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 136 毫秒
1.
对国产HF30F-24K碳纤维的力学性能、表截面形貌、单向和0°/90°经编织物性能及其复合材料性能进行了测试分析,结果表明:HF30F-24K碳纤维拉伸强度达到5000MPa以上,拉伸模量超过250GPa,且拉伸强度、拉伸模量和断裂伸长率的离散系数即Cv值全部低于5%,该产品具有较好的力学性能和稳定性,并具有典型的湿法纺丝工艺特点;HF30F-24K碳纤维单向织物经向断裂强力达到了3800N/25mm以上,0°/90°经编织物经向断裂强力超过了2800N/25mm,纬向断裂强力大于2600N/25mm; HF30F-24K碳纤维单向和0°/90°经编织物复合材料层间剪切强度分别为125.8MPa和77.2MPa,体现了湿法纺丝工艺碳纤维的界面结合优势,HF30F-24K碳纤维的单向和0°/90°经编织物预浸料复合材料也因此表现出较好的拉伸、压缩、弯曲性能。  相似文献   

2.
以尼龙6(PA6)为基体,膨胀石墨(EG)和碳纤维(CF)作为导热填料,采用熔融共混法制备了EG/PA6、CF/PA6和CF-EG/PA6导热复合材料。重点研究当固定导热填料(CF和EG)填充量为40wt%时,CF与EG不同的填充比例对CF与EG的接触方式及CF-EG/PA6复合材料的导热性和力学性能的影响。结果表明,相比单一CF填充,EG的加入有利于CF-EG/PA6复合材料热导率的增加;CF:EG质量比是25:15时的EG-CF/PA6三元复合材料,热导率可以达到2.554 W/(m·K),是PA6的8倍,拉伸强度提高了125.34%,弯曲强度提高了119.8%,同时具有优异的耐热性。SEM结果表明,纤维状CF与蠕虫状EG片层在适当的填充比例下可以形成"面接触"的三维网络结构,这种三维网络结构不仅显著增大EG-CF/PA6复合材料的热导率,而且明显提高了其力学性能和耐热性能。为研制填充型导热高分子材料提供了一条新思路。   相似文献   

3.
研究国产碳纤维/QY9611复合材料固定吸湿量下的湿热性能。通过71℃水浸方法测得该型复合材料的饱和吸湿率仅为0.73%左右,选取吸湿率0.2%、0.4%、0.6%和饱和吸湿作为试验的固定吸湿量。每个固定吸湿量分别在室温和高温150℃环境下进行弯曲性能试验和层间剪切性能试验。并在Q800型动态力学热分析仪上进行动态力学性能试验。结果表明:随着复合材料的吸湿量持续增加,复合材料力学性能呈下降趋势;碳纤维/QY9611复合材料在干态150℃下弯曲性能和层间剪切性能保持率在70%以上;碳纤维/QY9611复合材料在湿态150℃下弯曲性能和层间剪切性能保持率在50%以上;吸湿后其玻璃化转变温度Tg下降缓慢,极限使用温度可达132℃。  相似文献   

4.
管清宇  李卫平 《复合材料学报》2018,35(12):3288-3297
采用7781/CYCOM 7701玻璃纤维/环氧织物预浸料和中温固化工艺制造了复合材料单向层压板试验件。将试验件分为3组,分别对应低温干态(CTD)、室温干态(RTD)和高温湿态(ETW)3种试验环境条件。在这3种试验环境条件下,分别测试了复合材料单向层压板的拉伸、压缩、剪切、孔挤压和拉脱等力学性能。并在试验中适当考虑了复合材料经向和纬向力学性能差异、是否含缺口和是否含冲击损伤等情况。根据试验结果,研究了湿热环境对7781/CYCOM 7701玻璃纤维/环氧复合材料单向层压板典型力学性能的影响。研究表明:以RTD条件为基准,各项强度性能在CTD条件下均上升,而在ETW条件下均下降。其中,在ETW条件下,拉伸强度下降18%~25%,压缩强度下降10%~40%,剪切强度下降30%~50%,孔挤压强度下降约20%,拉脱强度下降接近30%;拉伸和压缩弹性模量受温度和吸湿条件影响较小,均在10%左右或以内;而泊松比和剪切弹性模量则受温度和吸湿条件影响很大,两者在ETW条件下的性能比在RTD条件下的性能分别下降约30%和50%。  相似文献   

5.
探究了热处理对聚酰胺6(PA6)在碳纤维(CF)表面的结晶行为及其界面力学性能的影响。利用差示扫描量热法(DSC)、偏光显微镜(POM)观察法等分析手段考察了热处理对PA6在CF表面结晶行为的影响,揭示了在热处理过程中,PA6进行链段重排,形成小且不完善的新结晶,导致结晶度的上升以及界面横晶形貌的完善;进一步通过单丝微球脱粘实验和单向CF/PA6复合材料横向拉伸实验考察了热处理对PA6与CF的界面结合性能的影响,揭示了经退火热处理的试样由于弱界面和应力集中的减少使界面剪切强度增加且单位体积断裂能下降。  相似文献   

6.
制备了多种铺层方式的连续玻璃纤维/聚丙烯(GF/PP)复合材料波纹夹芯板,并研究了GF/PP复合材料波纹夹芯板的平压性能和弯曲性能。结果显示:面板相同时,增加芯板厚度可大大增加夹芯板整体的平压性能;芯板相同时,面板的铺层方式对夹芯板的平压性能有一定影响,且面板含有0°和90°铺层的波纹夹芯板具有最高的平压模量,为59.55 MPa,而单纯增加面板厚度对提升波纹夹芯板的平压性能影响不大;面板铺层方式对弯曲性能具有较大影响,面板为0°铺层的波纹夹芯板具有最高的横向弯曲模量,为783.66 MPa,面板为90°铺层的波纹夹芯板具有最高的纵向弯曲模量,为732.09 MPa;面板为单向铺层(0°或90°铺层)时,会使夹芯板另一方向(纵向或横向)的弯曲性能形成短板。   相似文献   

7.
碳纤维/SiO2/聚苯并(噁)嗪复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
以纳米SiO2/聚苯并(噁)嗪(PBOZ)为基体树脂,与碳纤维(CF)复合,制备了CF/SiO2/PBOZ复合材料,研究了纳米SiO2含量对其弯曲强度、层间剪切强度以及断面形貌的影响.结果表明,纳米SiO2含量为4%时,CF/SiO2/PBOZ复合材料的性能最好,材料的弯曲强度和层间剪切强度分别达到835和72.1MP...  相似文献   

8.
对环氧树脂进行液体丁腈橡胶改性, 并采用缠绕无纬布层压成型工艺制备了硼纤维/环氧单向复合材料。测试了环氧树脂液体丁腈橡胶改性前后硼纤维/环氧单向复合材料的力学性能, 研究了硼纤维/环氧单向复合材料的纵向拉伸破坏模式。结果表明, 基体中的10%液体丁腈橡胶使硼纤维/环氧单向复合材料的拉伸强度、 弯曲强度、 层间剪切强度和断裂延伸率分别提高了18.42%、 13.39%、 28.45%和43.40%, 但其拉伸和弯曲模量稍有下降。基体中含10%液体丁腈橡胶的硼纤维/环氧单向复合材料的纵向拉伸破坏模式为界面层的内聚破坏和脱黏破坏共存的混合破坏。   相似文献   

9.
通过两段式聚合法制备共聚酰胺PA6-66,然后采用熔融共混得到碳纤维增强PA6-66复合材料(CF/PA6-66).对复合材料的断面形貌、热性能、结晶性能、非等温结晶动力学、熔体流变性、力学性能和动态力学性能进行了分析.差示扫描量热(DSC)和热重分析结果表明,CF/PA6-66复合材料的熔点约为190℃,分解温度在376℃以上.DSC和X射线衍射分析表明,CF的加入加快了聚合物的结晶速率,促进γ晶型的形成.力学性能和熔体流变性能测试结果表明,随着CF含量的增加,复合材料的拉伸强度、弯曲强度与缺口冲击强度均先升高后降低,当CF含量为20%时,CF/PA6-66复合材料的拉伸强度与弯曲强度分别为95.54 MPa和121.42 MPa,相比纯PA6-66分别提升了82.26%和81.17%,同时其黏流活化能仅为35.43 kJ/mol.  相似文献   

10.
研究了碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420的高温力学性能, 重点揭示了MT300/KH420的[0°]7、[0°]14 和[±45°/0°/90°/+45°/0°2]s层合板在常温~500 ℃的拉伸和层间剪切性能的变化规律。结果表明:在350 ℃以内,[0°]7层合板拉伸强度随温度升高有所提高, 拉伸模量几乎不变, 在420 ℃时拉伸强度和模量均出现明显下降, 在500 ℃时分别保持在65%和83%以上, 表现出优异的高温拉伸性能。MT300/KH420的[0°]14层合板层间剪切强度在常温~420 ℃随温度升高不断降低至52.8%, 在高温下呈现出黏弹效应, 且在420 ℃时最为明显。相比于单向层合板, [±45°/0°/90°/+45°/0°2]s多向层合板高温力学性能较为稳定, 且由纤维控制的纵向试件力学性能受温度影响较小。   相似文献   

11.
将芳纶作为捆绑纱制备纬编双轴向多层衬纱(MBWK)织物增强环氧树脂复合材料,研究了MBWK织物增强环氧树脂复合材料层间性能及芳纶捆绑纱对其层间性能的影响。通过三点弯曲和短梁剪切测试,得到MBWK织物增强环氧树脂复合材料的弯曲性能和层间剪切性能,并通过Aramis V6三维场应变测量系统观察实验过程中层间应变变化。与传统涤纶低弹丝捆绑的MBWK织物增强环氧树脂复合材料相比,芳纶捆绑MBWK织物增强环氧树脂复合材料的弯曲性能和层间剪切性能明显提升,弯曲强度和层间剪切强度分别提高了14.21%和12.70%;弯曲模量提高了25.49%。芳纶捆绑MBWK织物增强环氧树脂复合材料在受到面外载荷时,纵向应变(Epsilon X)和层间剪切应变(Epsilon XZ)在中性面区域内较大,且在受到面外载荷时,芳纶捆绑纱起到有效抑制复合材料分层的作用。   相似文献   

12.
采用超细聚四氟乙烯(PTFE)粉末作为减摩功能填料, 碳纤维(CF)作为增强材料, 制备了CF-PTFE/PA6复合材料; 利用60Co-γ射线对该复合材料进行了辐射改性, 对复合材料的力学性能和摩擦学性能进行了研究, 并采用SEM观察了该复合材料冲击断面的表面形貌。结果表明: 添加8%的PTFE和13%的CF的CF-PTFE/PA6复合材料不仅具有较好的力学强度和摩擦学性能, 而且经过120 kGy辐射处理后, 其弯曲强度、拉伸强度和冲击强度分别提高了9.9%、7.9%和11.7%。   相似文献   

13.
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/EP)复合材料,研究了GO在室温干态及湿热处理后对CF/EP复合材料动态热力学性能和层间剪切性能的影响,并通过微观形貌分析了复合材料的改性机制。结果表明,当GO添加量分别为0.5%和0.8%时,GO-CF/EP复合材料的玻璃化转变温度(Tg)得到明显提高,由CF/EP复合材料的184.4℃分别提高到197.7℃和199.5℃;GO-CF/EP复合材料经湿热处理后,GO-CF/EP复合材料的Tg的保持率比CF/EP略低。GO添加量分别为0.05%和0.1%时,GO-CF/EP复合材料的层间剪切强度由CF/EP复合材料的59.7 MPa分别提高到70.2 MPa和72.2 MPa;GO-CF/EP复合材料进行湿热处理后,GO添加量为0.05%的GO-CF/EP复合材料和GO添加量为0.1%的GO-CF/EP复合材料层间剪切强度较CF/EP复合材料高,但GO-CF/EP复合材料的湿热后层间剪切强度保持率均低于CF/EP复合材料。力学损耗分析表明,GO有效提高了CF与EP基体间的界面黏结作用。微观形貌分析表明,GO的存在可有效分散裂纹能量并使裂纹发生偏转,使GO-CF/EP复合材料抵抗裂纹扩展的能力提高。   相似文献   

14.
从工程化应用角度研究了常压空气等离子体改性对超高分子量聚乙烯(UHMWPE)纤维/环氧树脂复合材料界面性能的调节机制,主要分析了不同处理时间对UHMWPE纤维表面状态变化的影响,及其对UHMWPE/环氧树脂复合材料界面黏结性能的影响规律。采用SEM及纤维吸水测试研究了等离子体处理对UHMWPE纤维表面物理形貌及纤维表面浸润性能的影响,分别以拉伸和弯曲的方式,通过纤维表面脱黏力及层合板层间剪切强度对UHMWPE/环氧树脂复合材料的界面黏结性能进行表征。结果表明,仅经过4 s的空气等离子体处理之后,UHMWPE纤维表面脱黏力的提高幅度为84.0%,UHMWPE/环氧树脂复合材料层合板的层间剪切强度由未处理的7.01 MPa提高至15.81 MPa,增幅高达125.5%。研究发现,通过常压空气等离子体处理改变了UHMWPE纤维的表面状态,可以显著高效地调节UHMWPE/环氧树脂复合材料的界面性能,为扩大该材料的后续工程化应用提供了理论基础。   相似文献   

15.
采用尼龙无纺布(PNF)作为结构化增韧层,制备了PNF层间增韧改性的U3160碳纤维增强3266环氧树脂(U3160-PNF/3266)复合材料,研究了U3160-PNF/3266复合材料的面内力学性能及湿热老化后的力学性能变化,并分析了复合材料湿热老化前后的层间形貌。结果表明:PNF增韧层的引入并未导致复合材料面内力学性能的下降,与未增韧的U3160碳纤维增强3266环氧树脂(U3160/3266)复合材料相比,增韧复合材料U3160-PNF/3266的90°拉伸性能有所提高。而湿热老化处理对U3160-PNF/3266复合材料的基体和界面性能影响相对明显,尤其是尼龙纤维与树脂基体之间的界面结合性能,湿热老化处理后增韧复合材料的90°压缩和层间剪切性能保持率均明显低于未增韧复合材料的。  相似文献   

16.
电化学表面处理对碳纤维结构及性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型电化学表面处理设备,以10%(质量分数)NH4HCO3溶液为电解质,对12KPAN基碳纤维进行连续化的表面处理,探索了在提高碳纤维/树脂复合材料层间剪切强度的同时降低碳纤维本征拉伸强度损失的结构变化特征及规律。利用SEM、XRD、XPS、Raman等方法研究了改性前后碳纤维表面的物理和化学状态、晶体尺寸和表面有...  相似文献   

17.
为了探究莫来石纤维增强SiO_2气凝胶复合材料的拉伸和层间剪切性能,开展了相关试验。首先,进行了复合材料在室温下的面内拉伸试验,获得了复合材料的室温面内拉伸模量;然后,采用引伸计方法和数字图像相关法分别对拉伸变形进行测量,并对2种方法进行了对比分析;最后,开展了不同温度下的层间剪切试验,研究了复合材料在不同温度下的层间剪切性能,并对其微观结构进行了分析。结果表明:复合材料的拉伸模量约为285.17 MPa;由引伸计方法测得的拉伸变形计算出的拉伸模量比数字图像相关法获得的拉伸模量高2.4%;在室温和高温下,试样呈现明显的层间剪切破坏;对复合材料的微观分析发现,SiO_2气凝胶基体主要分布在层间区域,增强纤维主要分布在铺层内。所得结论表明莫来石纤维增强SiO_2气凝胶复合材料拉伸和层间性能较差,当承受层间载荷时,SiO_2气凝胶基体起主要作用,且温度对复合材料的性能影响较大。  相似文献   

18.
A facile electrophoretic deposition method was proposed to deposit copper (Cu) and carbon nanotubes (CNTs) on the surface of carbon fiber (CF) to improve the thermal conductivity and interfacial properties of carbon fiber-reinforced polymer (CFRP) composites. Surface morphologies, crystallographic properties, thermal conductivity, interlaminar shear strength (ILSS) and element distribution of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction, thermal constant analysis, short-beam bending tests and SEM energy-dispersive X-ray diffractometer (SEM–EDX), respectively. The results indicate that the presence of Cu and CNTs generated networks and bridges with each other, which produced continuous heat conduction pathways and significantly enhanced both the specific surface area and roughness of the fiber surface. These pathways obviously promoted an improvement in the thermal and interfacial properties. The thermal conductivity and ILSS of the CNTs–Cu–CF/epoxy composites increased by 292 and 39.5%, respectively, compared with CF/epoxy composites. Therefore, this method is anticipated to be utilized in the future fabrication of multifunctional CFRP composites.  相似文献   

19.
The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite’s life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite’s degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites (laminates [0/0]s and [0/90]s) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G 12) have been determinated by using the Iosipescu test. Results for laminates [0/0]s and [0/90]s, after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0]s and [0/90]s, respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0]s and [0/90]s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号