首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
对90mm厚EH47船用钢板进行了不同冲击能量下的梯度温度型ESSO试验以分析冲击能量对试验结果的影响.结果表明,采用下限冲击能量测得的-10℃止裂韧性值与双重拉伸试验所测值基本一致,但根据WES:2815-2014规范确定的上限冲击能量测得的止裂韧性值明显低于前两者测得的结果,建议后续在ESSO试验中针对90mm厚钢板选用冲击能量下限值进行试验.  相似文献   

2.
统计分析了28组采用TMCP工艺制造的高强度厚钢板-10℃止裂韧性K_(ca)与屈服强度R_(P0.2)、抗拉强度R_m、-40℃冲击功KV_2、-20℃和-40℃动态撕裂能DTE、零塑性转变温度T_(NDT)的相关性规律,结果表明,-10℃止裂韧性K_(ca)与心部抗拉强度R_m和侧面零塑性转变温度T_(NDT)的相关度较高,随着心部抗拉强度R_m的增高和侧面零塑性转变温度T_(NDT)的降低,-10℃止裂韧性K_(ca)增大;在此基础上建立了-10℃止裂韧性K_(ca)与心部抗拉强度R_m、侧面零塑性转变温度T_(NDT)和板厚t的相关性方程K_(ca)=13.358·R_m-90.530·T_(NDT)-7.324·t~(1.5)或K_(ca)=13.427·R_m-74.845·T_(NDT)-0.635·t~2。  相似文献   

3.
统计分析了26组采用TMCP工艺制造的高强度厚钢板-10℃止裂韧性(K_(ca)~(-10℃))与碳当量(C_(eq))、晶粒度(GS_)、磷含量(w(P))和板厚(t)的相关性规律,结果表明,提高碳当量、增大晶粒度、降低杂质元素磷的含量、减小板厚均有利于止裂韧性的提高,在此基础上建立了止裂韧性与碳当量、晶粒度、磷含量和板厚的回归方程:K_(ca)~(-10℃)=23 443.45·C_(ep)+276.51·G_S-0.77·w(P)·t~3-2.75·t~(1.5)。  相似文献   

4.
为了研究低温对超高强度钢断裂行为的影响,采用37SiMnCrNiMoV钢的表面予裂板状试件,经正常热处理(930℃,15分,油淬,280℃回火)后,在-196~20℃的温度范围内进行试验。随温度的变化,其断裂韧度值由85kgf·mm~(3/2)(-196℃)变到195·7kgf·mm~_(3/2)(20℃),而试样平断口区域中准解理刻面的百分数由100%(-196℃)变到15%(20℃)。本文指出了超高强度钢与低碳钢冷脆行为的差异并进行了讨论。本工作中还研究了奥氏体化保温时间,含碳量和低温回火脆性对超高强度钢低温断裂行为的影响。  相似文献   

5.
基于AH36、EH36和FH500三种船体钢的梯度温度场型双重拉伸试验结果,对止裂温度和止裂韧性分别作为止裂性能表征参量的特点进行了分析。结果表明,与止裂韧性相比,止裂温度测试稳定性好、工程适用性好,更宜作为船体钢止裂性能的工程应用表征参量。  相似文献   

6.
针对船用高强度厚钢板分别开展了梯度温度型双重拉伸试验和梯度温度型ESSO试验,分析了两种试验方法的等效性。结果表明,在试验误差范围内,两种试验方法所测结果基本一致,在高强度厚钢板止裂性能评价方面具有等效性。同时,基于能量守恒原理对等效性机理进行了初步分析。  相似文献   

7.
本文研究了高合金化的 Al—Cu—Zn 无磁合金经过均匀化退火。淬火及时效处理后,其组织和性能的变化,作为该合金热处理的依据。试验结果表明,含18—20%Cu 及20—22%Zn 的铸造 Al 合金铸态下的 H_B 值约为105kgf/mm~2,均匀化退火后减小到84kgf/mm~2。经过440℃淬火和自然时效后,其硬度随时效时间而增大,20天后 H_B 值由淬火状态的104kgf/mm~2增加到123kgf/mm~2;440℃淬火和160℃人工时效后,合金的硬度明显减小,时效29小时后,H_B 值约为76kgf/mm~2。淬火后自然时效或者淬火后人工时效,该合金的碎化率不发生明显的变化,测得的 K 值为0.08~0.09×10~(-6)cm~3/g,而铸态下的磁化率比这个数值要小(0.04~0.06×10~(-6)cm~3/g)均匀化状态的 k 值略低于铸态。上述性能是由各种状态下合金中的组织特征决定的。均匀化退火后,合金的组织为α T′ η;淬火后,保留了高温α CuAl_2的组织特征,再经人工时效后,η自两个相中析出,η为非强化相,因而,该合金用淬火时效不能达到强化的目的,不宜采用此种热处理形式。  相似文献   

8.
采用激光熔覆同步送粉法在304不锈钢上制备出自润滑耐磨涂层,熔覆粉末配比为纯Co,Co-2%Ti3 SiC2(质量分数,下同)和Co-8%Ti3 SiC2.借助扫描电子显微镜(SEM),能谱分析仪(EDS)和X射线衍射仪(XRD)对熔覆涂层进行表征,系统地研究304不锈钢与涂层在室温和600℃下的摩擦学性能与磨损机理.结果表明:激光熔覆Co-Ti3 SiC2涂层的平均显微硬度高于基体(240.3HV0.5),N1,N2和N3涂层的硬度分别为285.7HV0.5,356.3HV0.5和463.8HV0.5,涂层主要由连续基体γ-Co固溶体,硬质相Fe2 C,Cr7 C3和TiC,润滑相Ti3 SiC2组成.在室温下,基体和N1,N2,N3涂层的摩擦因数分别为0.56,0.62,0.68和0.42,N1,N2,N3三种涂层的磨损率分别为9.15×10-5,7.81×10-5,4.66×10-5 mm3/(N·m),均明显低于基体(66.42×10-5 mm3/(N·m));在高温下,基体和N1,N2,N3涂层的摩擦因数为0.66,0.54,0.52和0.46,N1,N2,N3三种涂层磨损率分别为37.79×10-5,35.6×10-5,18.83×10-5 mm3/(N·m),均低于基体(41.3×10-5 mm3/(N·m)).在室温和600℃下,涂层具有高于304不锈钢基体的显微硬度,且Co-8%Ti3 SiC2涂层呈现出最好的自润滑耐磨性能.  相似文献   

9.
在运用能量守恒原理分析止裂过程的基础上,通过统计52组低合金钢板试验数据,分析了梯度温度型双重拉伸试验测定的止裂温度和应力、板厚、表面-40℃冲击韧性的相关性规律,建立了止裂温度估算式:Tk=-66.1+0.011 8·σ·t2KV2。  相似文献   

10.
对梯温型宽板拉伸止裂试验中的止裂韧性K_(ca)、止裂温度T_K、止裂应力σca的相关性规律进行了理论分析,结果表明,相同温度下的止裂韧性和止裂应力呈线性关系,其线性系数由试板宽度Ws、温度场参数(T150、GT)和温度T_K确定;对21组试验数据的统计分析结果验证了该相关性规律。  相似文献   

11.
针对国际船级社规范UR S33《Requirements for use of extremely thick steel plates》中规定的止裂韧性Kca的测试要求,基于包含温度场参量的计算式证明了止裂韧性Kca测试结果存在不唯一性。  相似文献   

12.
采用大气等离子喷涂(APS)技术, 以ZrO2-8wt%Y2O3(8YSZ)和团聚的P7216(8YSZ和珍珠岩粉)粉末为原料, 在基体上制备了厚度大于4 mm的SiC纤维/YSZ(SFY)复合厚热障涂层, 通过扫描电子显微镜(SEM)分析了涂层的显微结构, 发现SFY涂层具有钢筋混凝土结构, 这种结构能够防止因为涂层厚度增加而引起的失效。此外, 基于计算机的断层成像技术分析热障涂层孔隙率的变化, 考察了SFY涂层和YSZ 热障涂层的抗热震性能、断裂韧性以及热导率性能, 并探讨了纤维的增韧机制。研究结果表明, SFY涂层具有更高的断裂韧性值和更好的抗热震性能, 25℃时SFY涂层的热导率为0.632 W/(m·K), 大约是传统YSZ热障涂层热导率的一半。SiC纤维对涂层内部裂纹的偏转和截止作用, 防止了裂纹扩散长大, 形成网状微裂纹结构, 有效提高了涂层的抗热震性能和断裂韧性。  相似文献   

13.
通过坩埚下降法生长GdI3:2%Ce及无掺杂GdI3闪烁晶体, 得到ϕ15 mm×20 mm的晶体毛坯, 从中加工出尺寸分别为12 mm×10 mm×2.5 mm和11 mm×8 mm×2.5 mm的无包裹体、无开裂的晶体样品, 封装后检测该晶体光学性能。XRD分析结果表明: 掺杂晶体GdI3:2%Ce与无掺杂GdI3晶体结构相同。X射线激发发射(XEL)和紫外激发发射谱(PL)测试结果显示: GdI3:2%Ce晶体在450~700 nm有宽带发光峰, 发光峰位分别位于520 nm和550 nm, 对应于Ce3+的5d-4f跃迁发光。以550 nm为监控波长, 测得在紫外激发下存在三个激发峰, 分别位于262、335和440 nm。GdI3:2%Ce晶体在137Cs源伽马射线(662 keV) 激发下能量分辨率为3.4%, 通过高斯拟合得到的衰减时间为58±3 ns。研究表明, GdI3:2%Ce晶体是一种良好的伽马和中子探测材料, 具有广泛的应用前景。  相似文献   

14.
分别采用三点弯曲SE(B)与紧凑拉伸C(T)试样,通过-20℃的低温裂纹尖端张开位移CTOD断裂韧性试验及疲劳裂纹扩展速率da/dN试验,研究了S355N及S355N-Z25结构钢的裂纹启裂与扩展的抗力.研究结果表明:S355N钢抵抗裂纹启裂及前期扩展的能力比S355N-Z25钢强,但前者抵抗裂纹后期扩展的能力比后者弱...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号