首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH 4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13·56 MHz) power. The negative bias voltage was varied from ?60 V to ?150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.  相似文献   

2.
Amorphous carbon film, bdalso known as DLC film, bdis a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the composition of the films. In view of this, bdthe objective of the present work is to compare the nanoindentation and atomic force microscopy (AFM) study of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (bdPECVD with the Ti containing amorphous carbon (Ti/a- C : H) film obtained by unbalanced magnetron sputter deposition (UMSD). Towards that purpose, DLC and Ti/a- C : H films are deposited on silicon substrate by PECVD and UMSD processes, respectively. The microstructural features and the mechanical properties of these films are evaluated by scanning electron microscopy (SEM), bdtransmission electron microscopy (TEM), nanoindentation and by AFM. The results show that the PECVD DLC film has a higher elastic modulus, hardness and roughness than the UMSD Ti/a- C : H film. It also has a lower pull off force than Ti containing amorphous carbon film.  相似文献   

3.
Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13·56 MHz rf power. DLC films deposited at three different bias voltages (−60 V, −100 V and −150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at −100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2·16–2·26) as compared to films deposited at −60 V and −150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.  相似文献   

4.
The low hardness and poor tribological performance of aluminum alloys restrict their engineering applications. However, protective hard films deposited on aluminum alloys are believed to be effective for overcoming their poor wear properties. In this paper, diamond-like carbon (DLC) films as hard protective film were deposited on 2024 aluminum alloy by arc ion plating. The dependence of the chemical state and microstructure of the films on substrate bias voltage was analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical and tribological properties of the DLC films deposited on aluminum alloy were investigated by nanoindentation and ball-on-disk tribotester, respectively. The results show that the deposited DLC films were very well-adhered to the aluminum alloy substrate, with no cracks or delamination being observed. A maximum sp3 content of about 37% was obtained at −100 V substrate bias, resulting in a hardness of 30 GPa and elastic modulus of 280 GPa. Thus, the surface hardness and wear resistance of 2024 aluminum alloy can be significantly improved by applying a protective DLC film coating. The DLC-coated aluminum alloy showed a stable and relatively low friction coefficient, as well as narrower and shallower wear tracks in comparison with the uncoated aluminum alloy.  相似文献   

5.
Diamond-like carbon (DLC) films were successfully prepared on glass substrates and surfaces of selenium drums via radio frequency plasma enhanced chemical vapor deposition method. The microstructure, surface morphology, hardness, film adhesion, and tribological properties of the films were characterized and evaluated by X-ray photoelectron spectroscopy, atomic force microscopy, and micro-sclerometer and friction-wear spectrometer. The results showed that DLC films have smooth surfaces, homogeneous particle sizes, and excellent tribological properties, which can be used to improve the surface quality of the selenium drums and prolong their service life.  相似文献   

6.
Diamond-like carbon (DLC) films were successfully prepared on glass substrates and surfaces of selenium drums via radio frequency plasma enhanced chemical vapor deposition method. The microstructure, surface morphology, hardness, film adhesion, and tribological properties of the films were characterized and evaluated by X-ray photoelectron spectroscopy, atomic force microscopy, and micro-sclerometer and friction-wear spectrometer. The results showed that DLC films have smooth surfaces, homogeneous particle sizes, and excellent tribological properties, which can be used to improve the surface quality of the selenium drums and prolong their service life.  相似文献   

7.
Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films.  相似文献   

8.
脉冲真空弧源沉积类金刚石薄膜耐磨特性研究   总被引:1,自引:1,他引:1  
本文利用脉冲真空弧源沉积技术在Cr17Ni14Cu4不锈钢和Si(100)基体上制备了类金刚石(DLC)薄膜,研究在不同基体偏压下,DLC薄膜的结构与性能.采用拉曼光谱和X射线光电子能谱(XPS)研究DLC薄膜的原子结合状态,利用CSEM销盘摩擦磨损试验机研究其耐磨性,利用HXD1000B显微硬度仪测试其显微硬度,并采用压痕法评价其结合力.研究结果表明:DLC薄膜与基体结合牢固.随着基体偏压的提高,DLC薄膜内sp3键含量增大,薄膜硬度提高.Cr17Ni14Cu4不锈钢表面沉积DLC薄膜后,耐磨性大幅度提高,本文探讨了DLC薄膜的耐磨机理.  相似文献   

9.
A pulse-modulated direct-current methane plasma is used to deposit amorphous hydrogenated carbon (a-C:H) films on Si and polymethyl methacrylate (PMMA) substrates. The structure and mechanical properties of the films are examined by applying a negative pulse bias voltage of 0.5 to 3 kV to the substrate at a pulse bias period of 100 to 200 μs. The deposition rate on both Si and PMMA increases with increasing the net input power, independent of the pulse period. The Raman spectra demonstrate that the films on Si are diamond-like carbon (DLC), while those on PMMA are polymer-like or soft amorphous carbon because of higher crystallinity of the sp2 phase and lower nanoscale hardness. The residual compressive stress of the films on PMMA is constantly low ranging from 0 to 2 GPa due exclusively to high flexibility of PMMA, which causes the easy relief of the stress and thus the density decrease in the films.  相似文献   

10.
Diamond-like carbon (DLC) films were prepared for a protective coating on nitinol substrate by hybrid ion beam deposition technique with an acetelene as a source of hydrocarbon ions. An amorphous silicon (a-Si) interlayer was deposited on the substrates to ensure better adhesion of the DLC films followed by Ar ion beam treatment. The film thickness increased with increase in ion gun anode voltage. The residual stresses in the DLC films decreased with increase in ion gun anode voltage and film thickness, while the stress values were independent of the radio frequency (RF) bias voltage. The adhesion of the DLC film was improved by surface treatment with argon ion beam for longer time and by increasing the thickness of a-Si interlayer.  相似文献   

11.
Chemical vapor deposition (CVD) of hard diamond-like carbon (DLC) films on silicon (100) substrates from methane was successfully carried out using a radio frequency (r.f.) inductively coupled plasma source (ICPS). Different deposition parameters such as bias voltage, r.f. power, gas flow and pressure were involved. The structures of the films were characterized by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The hardness of the DLC films was measured by a Knoop microhardness tester. The surface morphology of the films was characterized by atomic force microscope (AFM) and the surface roughness (Ra) was derived from the AFM data. The films are smooth with roughness less than 1.007 nm. Raman spectra shows that the films have typical diamond-like characteristics with a D line peak at 1331 cm−1 and a G line peak at 1544 cm−1, and the low intensity ratio of ID/IG indicate that the DLC films have a high ratio of sp3 to sp2 bonding, which is also in accordance with the results of FTIR spectra. The films hardness can reach approximately 42 GPa at a comparatively low substrate bias voltage, which is much greater than that of DLC films deposited in a conventional r.f. capacitively coupled parallel-plate system. It is suggested that the high plasma density and the suitable deposition environment (such as the amount and ratio of hydrocarbon radicals to atomic or ionic hydrogen) obtained in the ICPS are important for depositing hard and high quality DLC films.  相似文献   

12.
Abstract

In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.  相似文献   

13.
Impact of the active surface on properties of DLC films in the PACVD coating chamber. In the automotive industry, economic and stable industrial processes to apply hard coatings for tribological applications are required. Hence detailed knowledge about the influence of coating parameters on the film characteristics is essential. the following paper deals with the process of plasma activated chemical vapor deposition with focus on the effect of the parameter “active area in the coating chamber“ on the properties of diamond‐like‐carbons (DLC). the coatings are deposited in an industrial coating chamber using reactive magnetron sputtering with a pulsed bias voltage (40 kHz) and at constant pressure. During the investigation of the influence of active area and current density on the mechanical and tribological properties of the DLC films, the expected correlation between active area and current density could be confirmed. By regulating the current density, consistent film properties could be achieved, independently of the active area in the chamber. Furthermore improved wear characteristics of the film – crucial for the endurance of heavily loaded automotive components – were achieved by adapting the load pattern of the chamber.  相似文献   

14.
不锈钢衬底上沉积类金刚石薄膜的硬度   总被引:2,自引:0,他引:2  
利用射频辉光放电法在不锈钢衬底上制备了类金刚石薄膜,用显微硬度计测试了薄膜与衬底复合膜度和衬底硬度。并用B.Jonson和B.Hogmark方法将薄硬度分离出来,得到了硬度值与制与制备参数间的关系,确定了在不锈钢衬底上沉积高度和强附丰度类金刚石薄膜的最佳工艺条件范围,并对实验结果进行了理论解释。  相似文献   

15.
This paper reports the findings of a study of the structural, mechanical, and tribological properties of amorphous hydrogenated carbon (a-C:H) coatings for industrial applications. These thin films have proven quite advantageous in many tribological applications, but for others, thicker films are required. In this study, in order to overcome the high residual stress and low adherence of a-C:H films on metal substrates, a thin amorphous silicon interlayer was deposited as an interface. Amorphous silicon and a-C:H films were grown by using a radio frequency plasma enhanced chemical vapor deposition system at 13.56 MHz in silane and methane atmospheres, respectively. The X-ray photoelectron spectroscopy technique was employed to analyze the chemical bonding within the interfaces. The chemical composition and atomic density of the a-C:H films were determined by ion beam analysis. The film microstructure was studied by means of Raman scattering spectroscopy. The total stress was determined through the measurement of the substrate curvature, using a profilometer, while micro-indentation experiments helped determine the films' hardness. The friction coefficient and critical load were evaluated by using a tribometer. The results showed that the use of the amorphous silicon interlayer improved the a-C:H film deposition onto metal substrates, producing good adhesion, low compressive stress, and a high degree of hardness. SiC was observed in the interface between the amorphous silicon and a-C:H films. The composition, the microstructure, the mechanical and tribological properties of the films were strongly dependent on the self-bias voltages. The tests confirmed the importance of the intensity of ion bombardment during film growth on the mechanical and tribological properties of the films.  相似文献   

16.
离子辅助轰击能量对类金刚石薄膜性能的影响   总被引:1,自引:0,他引:1  
研究了利用IBAD方法沉积类金刚石薄膜时,离子的辅助轰击能量对薄的微观结构、表面粗糙度,弹性、硬度以及摩擦系数的影响,获得了机械和摩擦性能优异的类金刚石薄膜。讨论了薄膜微观结构和性能之间的关系。分析了不同硬度测试方法的差异。  相似文献   

17.
The unusual combination of high hardness and very low friction coefficient are the most attractive tribological parameters of DLC (diamond-like carbon) layers. However, their usability is strongly restricted by the limited thickness due to high residual stress. The main goal of the presented work was to obtain thick, wear resistant and well adherent DLC layers while keeping their perfect friction parameters. As a proposed solution a Ti-Ti x C y gradient layer was manufactured as the adhesion improving interlayer followed by a thick diamond-like carbon film. This kind of combination seems to be very promising for many applications, where dry friction conditions for highly loaded elements can be observed. Both layers were obtained in one process using a hybrid deposition system combining PVD and CVD techniques in one reaction chamber. The investigation was performed on nitrided samples made from X53CrMnNiN21-9 valve steel. Structural features, surface topography, tribological and mechanical properties of manufactured layers were evaluated. The results of the investigation confirmed that the presented deposition technique makes it possible to manufacture thick and well adherent carbon layers with high hardness and very good tribological parameters. Preliminary investigation results prove the possibility of application of presented technology in automotive industry.  相似文献   

18.
Abstract

Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.  相似文献   

19.
N. Ikenaga  N. Sakudo  H. Yasui 《Vacuum》2006,80(7):810-813
Diamond-like carbon (DLC) films made by plasma chemical vapor deposition (CVD) have many useful properties for tribological characteristics. Especially, friction coefficient is very low. However, the films have weak points i.e., very low heatproof temperature of less than 300 °C and low hardness insufficient for industrial applications like machine tools. On the other hand, it is well known that diamond films made by plasma CVD have excellent hardness. But, they also have inferior properties for industrial applications, such as higher surface roughness and lower critical load than DLC films. In this study, we developed hybrid nano-diamond (HND) films that are formed by alternately depositing DLC films and diamond films in a same chamber. The HND films have sufficiently high hardness as well as excellent tribological characteristics due to the multi-layer structure of DLC and diamond. The process of forming HND films are discussed.  相似文献   

20.
Diamond-like carbon (DLC) films have proven quite advantageous in many tribological applications due to their low friction coefficient, their extreme hardness, and more recently their high adherence on different substrate materials. However, for many applications, DLC films as thick as 2 μm are required, which cause high residual stress. In order to overcome this problem, this study observed the behavior of different thicknesses of silicon interlayer between DLC films and Ti6Al4V substrates. The study also analyzed the relation of growth parameters to the mechanical properties of DLC films. Silicon and DLC films were grown by using a rf-PECVD at 13.56 MHz with silane and methane atmospheres, respectively. The contribution of an interlayer thickness to the adhesion between the DLC films and Ti6Al4V substrate was evaluated by using a micro-scratch technique. The hardness and friction coefficient were evaluated by using microindentation and lateral force microscopy (LFM), respectively. Raman scattering spectroscopy was used to characterize the film quality. A correlation was found between the intrinsic stress and adhesion of DLC film and the parameters of the silicon interlayer growth. The addition of a silicon interlayer successfully reduced intrinsic stress of the films, even as measured by using a perfilometry technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号