首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
选用W7与W63两种SiC粉末,采用高、低温粘结剂配合,模压成型,850℃空气气氛低温多段烧结,制备出体积分数为65.13%的SiC预制件,真空压力浸渗6063A1合金熔液,得到SiCp/A1复合材料.结果表明:复合材料XRD图谱中未出现明显的Al4C3界面相和SiO2杂相;致密度高;100℃时的热膨胀系数为7.592...  相似文献   

2.
为了提高C/C复合材料的抗烧蚀性能,采用反应熔渗法制备Al-Si-C改性C/C复合材料,利用X射线衍射仪、扫描电子显微镜、能谱和电子探针分析等手段分析熔剂成分、熔渗温度和气氛等参数对复合材料微观结构的影响。利用氧-乙炔焰烧蚀仪研究Al-Si-C改性C/C复合材料的烧蚀性能、烧蚀行为及机理。结果表明,随着工艺参数不同,反应熔渗法可制备出三类典型的Al-Si-C改性C/C复合材料。在1 500℃,氩气气氛中反应熔渗2 h形成了Al+SiC均质改性C/C复合材料;随着熔渗温度的升高(1 600℃)和熔渗时间的延长(6 h),形成了Al_4SiC_4+SiC改性C/C复合材料;在1 600℃,真空气氛中反应熔渗6 h形成了SiC+Al梯度改性C/C复合材料(Al含量由内到外递减)。三类Al-Si-C改性C/C复合材料显示不同的烧蚀行为,其中,SiC+Al梯度改性C/C复合材料具有最优的抗烧蚀性能,在2 500℃下烧蚀60 s后,样品表面无明显的烧蚀坑,质量烧蚀率分别为-1.0×10~(-3)g/s和-1.2×10~(-3)g/s。  相似文献   

3.
采用化学气相渗透(CVI)结合溶液浸渍法制备3D-C/SiC-(W-C)多元基复合材料,利用XRD、SEM技术对材料烧蚀前后的物相组成及微观结构进行表征,并讨论了复合材料的烧蚀性能.结果表明,3D-C/SiC-(W-C)复合材料的主要成分为WC、W、SiC和C,而烧蚀表面的主要成分为WO3、w和SiC.W-C不仅渗入纤维束间,还渗入到纤维束内.制得的C/SiC-(W-C)复合材料密度为3.3g/cm3,开气孔率为11%,其线烧蚀率和质量烧蚀率分别为4.3×10-2mm/s和7.2×10-3g/s.  相似文献   

4.
采用反应热压烧结法制备了SiC/Ti3SiC2复合材料,研究了热压温度、SiC含量及粒度对SiC/Ti3SiC2复合材料相组成、力学性能以及应力-应变行为的影响.结果表明:热压温度影响SiC/Ti3SiC2复合材料相组成;随着热压温度的提高,复合材料的弯曲强度和断裂韧性提高;随SiC含量的增加,SiC/Ti3SiC2复...  相似文献   

5.
以W丝作为成孔剂,采用孔隙预置技术制备了发汗多孔C/SiC复合材料,对其孔隙结构进行表征,研究了材料的力学性能和渗透行为.结果表明:采用孔隙预置技术能够有效的控制多孔C/SiC材料开孔率和孔隙结构,其孔隙主要由W丝去除后形成的直通孔组成,开孔率决定于W丝的体积含量,所制备的材料具有良好的力学性能和渗透性能.其弯曲强度达到358 MPa、弯曲模量达到124 GPa,断裂韧性达到16.7 MPa·m1/2,空隙率为23.5%,渗透率为1.02×10-3mm2,材料表现为韧性断裂模式,其孔隙的存在并没有对材料的力学性能产生明显的影响.  相似文献   

6.
为研究Ni基Y2W3O12复合材料的热学性能,首先,采用二次焙烧法制备了负膨胀材料Y2W3O12;然后,将Y2W3O12与金属Ni进行混合,并在1 200℃、50 MPa的条件下热压烧结制得40vol%Y2W3O12/Ni复合材料;最后,对复合材料的成分及热膨胀性能进行了研究。结果表明:在热压烧结过程中,由于Ni的还原性比W差,相对于对比试样40vol%Y2W3O12/Cr复合材料中发生的复杂化学反应,40vol%Y2W3O12/Ni复合材料的两相之间并未发生反应,使40vol%Y2W3O12/Ni复合材料保持了较低的热膨胀系数;经数次循环退火释放热应力及去除Y2W3O12相的结晶水后,40vol%Y2W3O12/Ni复合材料在170~800℃温度范围内的热膨胀系数趋于稳定,约为3.4×10-6 K-1,与理论设计值4.0×10-6 K-1相近。  相似文献   

7.
引入MgAl_2O_4对Ti_3SiC_2基复合材料性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用反应热压烧结法制备MgAl2O4/Ti3SiC2复合材料,研究热压温度和MgAl2O4含量对该复合材料相组成、力学性能及抗氧化性能的影响。结果表明:热压温度影响MgAl2O4/Ti3SiC2复合材料相组成,在1 450℃烧结可得到性能良好的MgAl2O4/Ti3SiC2复合材料。引入适量的MgAl2O4,起到弥散强化的作用,有助于提高复合材料的力学性能,当引入量为20wt%时,抗弯强度为527.6 MPa,断裂韧性为7.09 MPa·m1/2。MgAl2O4/Ti3SiC2试样的抗氧化性能优于Ti3SiC2试样。MgAl2O4/Ti3SiC2复合材料在1 400℃氧化后的氧化层分两层,外层是Mg0.6Al0.8Ti1.6O5和金红石型TiO2,内层是由TiO2、方石英SiO2及少量未氧化的基体相混合组成。  相似文献   

8.
放电等离子烧结制备高导热SiC_P/Al电子封装材料   总被引:1,自引:0,他引:1  
为了满足电子封装材料越来越高的性能要求,采用放电等离子烧结(SPS)工艺制备了SiCP/Al复合材料。研究了烧结温度和保温时间等工艺条件对SiCP/Al复合材料组织形貌和性能的影响。结果表明:采用SPS烧结,温度为700℃、保温时间为5 min时,所制备的70 vol%SiCP/Al复合材料热导率达到195.5 W(m.K)-1,与传统15%W-Cu合金相当,是Kovar合金的10倍,但密度小,仅为3.0 g.cm-3;其热膨胀系数为6.8×10-6K-1,与基板材料热膨胀系数接近;抗弯强度为410 MPa,抗拉强度为190 MPa,达到了电子封装材料对热学性能和力学性能的要求。  相似文献   

9.
为研究陶瓷添加物对Ti3SiC2基复合材料性能的影响,首先,采用反应热压烧结法制备了Ti3SiC2材料及陶瓷添加物含量均为30wt%的SiC/Ti3SiC2、Al2O3/Ti3SiC2和MgAl2O4/Ti3SiC2复合材料。然后,测试了材料的力学性能和导电性,在1 373~1 773K温度范围内对Ti3SiC2基复合材料的抗氧化性进行了研究,并对其烧结试样的物相组成和显微结构等进行了表征。结果表明:Ti3SiC2在高温氧化后的主要产物为TiO2和SiO2;氧化层分为内外2层,内层由TiO2与SiO2这2相混合组成,外层为TiO2;氧化层中存在大量显气孔,结构较为疏松,导致抗氧化性较差。与Al2O3/Ti3SiC2和MgAl2O4/Ti3SiC2复合材料相比,SiC/Ti3SiC2复合材料具有更好的抗氧化性。  相似文献   

10.
以聚丙烯腈( PAN) 基炭纤维(Cf ) 针刺整体毡为预制体, 用化学气相渗透(CVI) 法制备炭纤维增强炭基体(C/ C) 的多孔坯体, 采用熔融渗硅(MSI) 法制备C/ C-SiC 复合材料, 研究了渗剂中添加Al 对复合材料组织结构和力学性能的影响。结果表明: C/ C 坯体反应溶渗硅后复合材料的物相组成为SiC 相、C 相及残留Si 相。随着渗剂中Al 量的增加, 材料组成相中的Al 相也增加而其它相减少; SiC 主要分布在炭纤维周围, 残留Si 相分布在远离炭纤维处, 而此处几乎不含Al ; 当渗剂中Al 量由0 增加到10 %时, 复合材料的抗弯强度由116. 7 MPa 增加到175. 4 MPa , 提高了50. 3 % , 断裂韧性由5. 8 MPa·m1/2增加到8. 6 MPa·m1/2 , 提高了48. 2 %。Al 相的存在使复合材料基体出现韧性断裂的特征。   相似文献   

11.
通过添加适量的Al_2W_3O_(12)负热膨胀粉体来优化碳化硅颗粒增强铝基(SiC_p/Al)复合材料的热膨胀系数。实验采用固相法制备负热膨胀性能的Al_2W_3O_(12)粉体,并按10%,20%,30%的体积比添加至SiC_p/Al复合粉体中,利用粉末冶金工艺制备SiC_p/Al_2W_3O_(12)/Al复合材料。实验结果表明:制备的复合材料组织分布均匀,致密度良好。室温到200℃内,在Al基体质量分数不变的前提下,Al_2W_3O_(12)的加入有效降低了复合材料的热膨胀系数。  相似文献   

12.
TiB2/Al自润滑复合材料在动压马达零件上的应用研究   总被引:1,自引:0,他引:1  
复合材料组织致密,颗粒分布均匀.与基体结合紧密.具有较高的弹性模量和抗弯强度。室温下与GCr15轴承钢对磨时其摩擦系数在0.2左右.自磨时摩擦系数在0.08左右.摩擦表面没有明显的粘着或犁削痕连.磨损率明显低于SiCr/Al复合材料和GT35合金.呈现出较好的自润滑性能。  相似文献   

13.
将粒度为F280的SiC颗粒振实后直接无压浸渗液态AlSi12Mg8铝合金,制备出高SiC含量的铝基复合材料,并对其结构和性能进行了研究。结果表明:采用该方法制备的SiC/A1复合材料内部组织结构均匀致密,无明显气孔等缺陷,界面产物主要为Mg2Si,MgO,MgAl2O4;平均密度为2.93 g·cm-3,抗弯强度在320 MPa以上,热膨胀系数为6.14×10-6~9.24×10-6 K-1,导热系数为173 W·m-1·K-1,均满足电子封装材料要求。  相似文献   

14.
为提高Ti6Al4V合金的高温摩擦学性能,采用激光熔覆技术在其表面原位合成多相混杂金属基高温自润滑耐磨复合涂层,熔覆粉末的成分为Ni60-16.8%TiC-23.2%WS_2(质量分数,下同),系统地研究复合涂层的显微组织、物相结构及其在20,300,600,800℃下的摩擦学性能和相关磨损机理。结果表明:复合涂层的显微硬度(701.88HV0.5)约为基体(350 HV0.5)的2倍;由于原位合成固体润滑相(Ti_2SC/TiS/NiS/TiO/TiO_2/NiCr_2O_4/Cr_2O_3)和硬质相(W,Ti)C1-x/TiC/Cr_7C_3的协同作用,复合涂层的耐磨减摩性能明显优于基体。随着温度升高,涂层和基体的摩擦因数和磨损率均呈下降趋势,在800℃时复合涂层和基体的摩擦因数分别为0.32和0.43,磨损率分别为1.80×10-4,2.92×10-5mm/Nm。在800℃下塑性变形、分层和氧化磨损为基体主要磨损机理,复合涂层以氧化磨损和轻微的黏着磨损为主。  相似文献   

15.
在温度为360~450℃、应变率为0.001~1s-1的变形条件下,采用Gleeble-1500D热模拟机对固相回收SiC_p/ZK60镁基复合材料的高温压缩变形行为进行研究。结果表明:固相回收SiC_p/ZK60的流变应力随变形温度的升高而降低,随应变率的升高而升高,且随应变的增加,流动应力很快达到峰值,然后逐渐趋于稳定。固相回收SiCp/ZK60热压缩变形应力指数为3.348,变形激活能为64.97kJ/mol,其高温压缩流变应力模型为ε'=4.69×104[sinh(0.051σ)]3.348exp(-64790/(RT));本试验条件下,固相回收SiC_p/ZK60的流变应力模型可以用Zener-Hollomon参数的双曲线函数形式进行描述。  相似文献   

16.
采用微波烧结的方法,在烧结温度分别为680℃,710℃,740℃,770℃,800℃制备了15%的SiCp/Al复合材料。探讨温度对材料的致密度和力学性能的影响。结果表明:致密度和材料硬度及冲击韧性随温度变化呈马鞍形,在770℃样品的密度和硬度及冲击韧性达到最佳值,分别为2.62g/cm3,42.6MPa,40J/cm2。结论:用微波烧结SiCp/Al复合材料可在短时间内使样品达到烧结致密化,缩短烧结时间,节约能源。  相似文献   

17.
将M40J碳纤维(Cf)以叠层缝合结构编织成预制体,采用真空气压浸渗工艺制备成Cf/Al复合材料。在高温环境(350℃、400℃)下进行三点弯曲测试试验,通过SEM、TEM、EDS和XRD对材料的元素分布、物相组成、微观组织和界面特征进行观察分析,研究其高温弯曲性能,探讨该种材料在高温环境下弯曲失效机制。结果表明,制备的Cf/Al复合材料基体与增强体界面轮廓清晰且结合紧密,材料内部基体受残余拉应力。Cf/Al复合材料在350℃时的弯曲强度和模量分别为175.2 MPa和90.1 GPa,在400℃时为160.8 MPa和87.5 GPa;温度升高时叠层缝合结构Cf/Al复合材料的弯曲强度未出现大比例下降,其高温稳定性较其他编织结构更好。Cf/Al复合材料在高温环境下弯曲失效时受拉伸、压缩共同作用,其失效方式是基体开裂及部分纤维断裂,主导因素为基体在高温下软化和材料界面结合强度下降。   相似文献   

18.
采用快凝甩带技术制备了6组不同Ti含量的(Al-10Si-20Cu-0.05Ce)-xTi急冷箔状钎料,并对SiCp/6063Al复合材料进行真空钎焊,然后对钎料及接头的显微组织和性能进行分析。结果表明,急冷箔较常规铸态钎料的组织细小、均匀;固、液相线降低,熔化区间变窄;随着Ti含量的增加,急冷箔中片状Al-Si-Ti金属间化合物相增多,导致钎料脆性增加;6组钎料在复合材料上润湿性较差,但在6063Al合金上润湿性良好。在580℃钎焊温度、保温30min条件下,采用1%Ti含量急冷箔状钎料成功连接了SiCp/6063Al复合材料,钎焊接头组织致密、完整,急冷箔状钎料与6063Al合金基体连接界面可进行充分的冶金结合,且接头剪切强度达到104.9 MPa;钎焊前采用夹具增加接头压力可显著提高接头的连接质量。  相似文献   

19.
铁铬镍合金具有良好的高温强韧性和抗蠕变性,被广泛应用于制造航空发动机、工业燃气轮机等设备。利用原位合成和热压烧结工艺制备Al2O3/Fe-Cr-Ni复合材料。为减少脆性相对复合材料性能的影响,将热压烧结试样在1000℃下真空保温2h后退火。采用XRD和SEM等测试方法,研究热处理后Al2O3/Fe-Cr-Ni复合材料的微观结构和常温力学性能。结果表明:Al2O3/Fe-Cr-Ni复合材料主要由Fe-Cr-Ni合金相、Fe-Cr相和Al2O3陶瓷增强相组成。热压烧结试样的维氏硬度、抗弯强度和断裂韧度分别为4.16GPa、298.31MPa和8.04MPa·m1/2。经1000℃高温热处理后,复合材料中Fe-Cr相发生奥氏体转变和合金基体晶粒长大,导致硬度下降至2.98GPa。Fe-Cr-Ni合金基体中韧性相含量和基体连续性增加,使该复合材料的抗弯强度和断裂韧度明显上升,其值分别为459.33MPa和12.81MPa·m1/2。  相似文献   

20.
采用快速甩带技术制备了(Al-10Si-20Cu-0.05Ce)-1Ti(质量分数/%)急冷箔状钎料,并对60%体积分数的SiCp/6063Al复合材料进行真空钎焊实验,然后对钎料及接头的显微组织与性能进行测定和分析.结果表明,急冷钎料的微观组织细小、成分均匀,厚80~90μm,主要包含Al、CuAl2、Si和Al2Ti等相.当升高钎焊温度(T/℃)或延长保温时间(t/min),SiCp/钎料界面的润湿性改善,6063Al基体/钎料间互扩散和溶解作用增强,接头连接质量逐渐提高.当T=590℃、t=30 min时,接头抗剪强度达到112.6MPa;当T=590℃、t=50 min时,少量小尺寸SiCp因液态钎料排挤而分散于钎缝,因加工硬化而使接头强度递增7.3%.然而,当T≥595℃、t≥60 min时,SiCp偏聚于钎缝,导致接头组织恶化,且剪切断裂以脆性断裂为主.综合考虑钎焊成本与接头强度使用要求,确定最佳钎焊工艺为590℃、30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号