首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 222 毫秒
1.
通过对一种等温锻造GH4169镍基合金进行直接时效处理,蠕变性能测试及组织形貌观察,研究了该合金的组织结构与蠕变行为。结果表明,GH4169合金的组织结构由γ基体,γ′相、γ″相和δ相组成,且各相之间保持共格界面。测定出合金在660℃/700MPa条件下的蠕变寿命为123h。合金在680℃/700MPa的蠕变寿命为39h,在实验温度和应力范围内,计算出直接时效合金的蠕变激活能为588.0kJ/mol。合金在蠕变期间的变形机制是位错滑移和孪晶变形,其中,沿晶界析出的粒状碳化物,可抑制晶界滑移,是使合金具有较好蠕变抗力的主要原因。随蠕变进行,开动的滑移系中位错运动至晶界受阻,并塞积于该区域引起应力集中,当应力集中值大于晶界的结合强度时,可促使其在与应力轴垂直的晶界处发生裂纹的萌生与扩展,直至断裂,是合金在蠕变期间的断裂机制。  相似文献   

2.
FGH95粉末镍基合金的组织结构与蠕变特征   总被引:1,自引:0,他引:1  
通过蠕变曲线的测定及组织形貌的观察,研究了FGH95粉末镍基合金的蠕变行为及变形特征.结果表明:FGH95粉末镍基合金在试验的温度和应力范围内,具有明显的施加温度和应力敏感性,并测算出合金的蠕变激活能和应力指数.合金的组织结构由一次、二次、三次γ'相及弥散分布的碳化物组成,在粉末颗粒之间具有较宽的晶界.蠕变期间,在合金晶粒内的变形以单取向或双取向滑移方式进行,并在滑移迹线附近有细小碳化物析出,而较宽的晶界由于剧烈变形可发生碎化形成细小晶粒.合金在蠕变期间的微观变形机制是位错发生双取向滑移,其中(1/2)《110》位错在γ基体相中运动,《110》超位错存在于γ'相内,而层错的形成是由于《110》超位错分解为(1/3)《112》超肖克莱不全位错所致.  相似文献   

3.
通过对不同工艺处理FGH95合金进行组织形貌观察及持久性能测试,研究了组织结构对合金持久性能的影响规律。结果表明:经1150℃固溶和时效处理后,合金中有粗大γ′相在较宽的边界区域不连续分布,其周围存在γ′相贫化区;经1160℃固溶及时效处理后,合金中粗大γ′相完全溶解,在晶内弥散分布高体积分数的γ′相,并有粒状(Cr,Nb)23(C,B)6硼碳化合物在晶内及沿晶界不连续析出;经1165℃固溶和时效后,合金的晶粒尺寸明显长大,并有硬而脆的碳化物膜沿晶界连续析出。在650℃、1034MPa条件下,经1160℃固溶和时效合金具有较高蠕变抗力和较长持久寿命,蠕变期间的变形机制是位错以Orowan机制饶过γ′相、或位错剪切γ′相,其中晶界处不连续析出的粒状碳化物可有效阻碍位错滑移,是使合金具有较好蠕变性能的主要原因。蠕变后期,合金的变形特征是晶内发生单取向滑移,随蠕变进行位错在晶界处塞积,并引起应力集中,致使裂纹在晶界处萌生及扩展是合金的蠕变断裂机制。  相似文献   

4.
通过对热连轧GH4169合金进行固溶和时效处理、组织形貌观察和蠕变性能测试,研究了固溶和时效处理合金的组织结构和蠕变特征。结果表明,经固溶和时效处理合金由较大尺寸晶粒组成,并具有明显的孪晶特征,且细小γ′、γ″相在晶内弥散析出,可提高合金的蠕变抗力;在实验应力和温度范围内,测得该合金的蠕变激活能为537.8kJ/mol,且对施加应力和温度具有敏感性;在蠕变期间,热连轧GH4169合金的变形特征是位错的单双取向滑移和孪晶变形,随着蠕变进行,裂纹沿晶界萌生和扩展到发生沿晶断裂是该合金的蠕变断裂机制。  相似文献   

5.
为了在挤压生产中获取均匀的镁合金变形组织,需要掌握合金含量及均匀化退火对热挤压组织的影响规律.本实验通过在Gleeble-1500D热模拟实验机上对不同Al含量的AZ10,AZ31,AZ61和AZ91镁合金进行热模拟挤压,结果表明,经过400℃/12h均匀化退火,AZ10和AZ31合金均形成单一的α固溶体,AZ61合金...  相似文献   

6.
AZ91D镁合金阻尼性能的研究   总被引:1,自引:0,他引:1  
胡小石  张永锟  郑明毅  王艳秋  吴昆 《功能材料》2004,35(Z1):2199-2201
利用动态机械分析仪(DMA)研究了热处理工艺对商业AZ91D镁合金阻尼性能的影响规律.研究结果表明热处理对AZ91 D镁合金的阻尼性能有较明显的影响.时效处理态AZ91D镁合金的临界脱钉应变振幅小于固溶处理态.当应变振幅大于临界应变振幅,合金的阻尼值迅速升高.随着测试温度的升高,合金的阻尼值升高,在临界温度之前以位错阻尼机制为主,当温度超过临界温度则以晶界滑动为主要阻尼机制.  相似文献   

7.
通过蠕变曲线测定及组织形貌观察,研究了一种含4.2%Re镍基单晶合金的蠕变行为和组织演化规律。结果表明:单晶合金在试验的温度和应力范围内,对施加应力和温度有明显的敏感性,并测算出合金在稳态蠕变期间的激活能和应力指数。在蠕变初期,合金中γ′相沿垂直于应力轴方向形成N-型筏状结构,蠕变断裂后在远离断口区域形成的筏状γ′相逐渐转变成扭曲形态,在近断口区域的筏状组织转变成与施加应力轴方向呈近45°角度倾斜。合金在稳态蠕变期间的变形机制是位错攀移越过γ′相,位错的攀移通过割阶沿位错线运动而逐步实现;而在蠕变后期,合金的变形机制是位错剪切筏状γ′相。  相似文献   

8.
使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。  相似文献   

9.
MgCO3在AZ31镁合金中的细化效果及机理   总被引:1,自引:0,他引:1  
为改善AZ31镁合金铸态组织,用MgCO3对其进行细化,采用扫描电子显微镜、X射线衍射仪和金相显微镜研究了细化工艺参数对AZ31镁合金显微组织及其物相组成的影响.结果表明:在AZ31中添加质量分数为0.6%的MgCO3,于760℃保温10 min细化效果最佳,α-Mg晶粒的尺寸由基体合金的570μm降至100μm,降幅约82.5%.少量多次添加MgCO3的细化效果明显优于单次添加MgCO3的细化效果.研究认为,细化机理是MgCO3反应后生成的部分Al4C3质点作为异质核心细化晶粒,多余的Al4C3质点钉扎晶界阻碍晶粒长大.Al元素随固/液界面前沿被快速推至晶界,生成沿晶界生长的β-Mg17Al12相,起到进一步固定晶界的作用.合金元素的分布均有改变.  相似文献   

10.
通过对不同方式冷却的热连轧GH4169合金进行直接时效处理、蠕变性能测试和组织形貌观察,研究了冷却方式对热连轧GH4169合金的组织结构与蠕变行为的影响。结果表明:"水冷"HCR-GH4169合金经直接时效后,其组织由细小晶粒组成,大量细小γ′,γ″相在晶内弥散析出,可提高合金蠕变抗力,而"空冷"热连轧合金晶粒尺寸较大,且在基体中析出的γ′,γ″两相的数量明显减少;在实验条件下,"水冷"热连轧合金经直接时效后具有较好的蠕变抗力和较长的蠕变寿命;热连轧及直接时效合金在蠕变期间的变形机制是位错在基体中发生单、双取向滑移和孪晶变形,在蠕变后期,裂纹在晶界处萌生和扩展,并发生沿晶断裂是合金的蠕变断裂机制。  相似文献   

11.
通过对含4.5%Re/3.0%Ru单晶镍基合金进行高温蠕变性能测试,并采用扫描电镜(SEM)、透射电镜(TEM)对不同蠕变期间的试样进行组织形貌观察,研究了该合金的高温蠕变行为。结果表明,本实验所选用的单晶合金在高温蠕变期间具有良好的蠕变抗力,在1040℃/160MPa的蠕变寿命达到725h。高温蠕变初期,合金中γ′相沿垂直于应力轴方向转变成筏状结构,其稳态蠕变期间的变形机制是位错在基体中滑移和攀移越过筏状γ′相。高温蠕变后期,合金的变形机制是位错在基体中滑移和剪切筏状γ′相。位错的交替滑移使筏形γ′相扭曲,并在γ/γ′两相界面发生裂纹的萌生与扩展直至断裂,是合金在高温蠕变后期的断裂机制。  相似文献   

12.
通过对等温锻造合金进行直接时效、蠕变性能测试和组织形貌观察,研究了微量元素P、B对GH4169合金组织结构及蠕变行为的影响.结果表明:添加微量P、B可促使粒状δ相在合金中析出,且沿晶界不连续析出的δ相可抑制晶界滑移,提高合金的蠕变抗力;在试验温度和应力范围内,测定出GH4169G合金具有较高的蠕变激活能Q=594.7 ...  相似文献   

13.
通过蠕变性能测试和组织形貌观察,研究了一种Re含量为4.5%Re(质量分数,下同)的镍基单晶合金的高温蠕变行为、变形和损伤机制。结果表明,4.5%Re合金在980℃/300MPa的蠕变寿命为169h。蠕变初期,合金中立方γ′相转变为垂直于应力轴的N型筏状结构。稳态蠕变期间,合金的变形机制为位错在基体中滑移和攀移越过筏状γ′相。蠕变后期,合金的变形机制为位错在基体中滑移和剪切进入筏状γ′相。由于γ基体通道较窄,位错在基体通道中滑移所需的阻力较大。剪切进入γ′相的110超位错可由{111}面交滑移至{100}面,形成K-W锁,从而抑制位错的滑移和交滑移,这是合金具有较好蠕变抗力的主要原因。主/次滑移位错的交替开动,可致使筏状γ′相扭曲,并促使裂纹在筏状γ/γ′两相界面萌生;裂纹沿垂直于应力轴方向扩展,直至断裂,这是合金的蠕变断裂机制。  相似文献   

14.
By means of the measurement of the creep curve and the observation of SEM and transmission electron microscope (TEM), an investigation has been made into the microstructure evolution and deformation features of AZ31 Mg-alloy during high temperature creep. Results show that the deformation features of the alloy in the primary stage of creep are that significant amount of dislocation slips are activated on basal and non-basal planes, then these ones are concentrated into the dislocation cells or walls as creep goes on. At the same time, twinning occurs as an additional deformation mechanism in the role of the compatibility stress. During steady state creep, the dislocation cells are transformed into the subgrains, then, the protrusion and coalition of the sub-boundaries results in the occurrence of dynamic recovery (DRV). After the dynamic recrystallization (DRX), the multiple slips in the grain interiors are considered to be the main deformed mechanism in the later stage of the steady state creep. An obvious feature of creep entering the tertiary stage is that the cracks appear on the locations of the triple junction. As creep continues, the cracks are viscous expanded along the grain boundaries; this is taken for being the fracture mechanism of the alloy crept to failure. The multiple slips in the grain interiors and the cracks expanded viscous along the grain boundary occur in whole of specimens, that, together with the twins and dynamic recrystallization, is responsible for the rapid increase of the strain rate in the later stage during creep.  相似文献   

15.
The microstructure of ultrafine grain for magnesium alloys can result in drastic enhancement in their room temperature strength, but the issue of low strength at elevated temperature becomes more serious as well due to grain boundary slide. Here ultrafine-grained Ti/AZ31 magnesium matrix composites with high strength at both room and elevated temperature were prepared by vacuum hot pressing and subsequent hot extrusion. The microstructure of the composite samples before and after consolidation processing was characterized, and the mechanical properties of the as-consolidated bulk samples were measured at room and elevated temperatures. The results indicate that after extrusion ultrafine-grained magnesium alloys were obtained and Ti particulates with particulate size of ~310?nm disperse in Mg matrix. The magnesium grain of AZ31-15at.%Ti grows from 66?nm to 800?nm. Meanwhile, the relative densities of Ti/AZ31 composites are higher than 99%. The yield strength (YS) of extruded AZ31-15at.%Ti composite at room temperature is 341?MPa, being 2.4 times higher than original AZ31 alloy. Theoretical estimation shows that remarkably enhanced room-temperature mechanical strength attributes to grain boundary strengthening with the contribution ratio of 74%. In addition, the peak stress of extruded AZ31-15at.%Ti composite at 573?K is 82?MPa and ultrafine Ti dispersions are responsible for the enhanced strength.  相似文献   

16.
挤压对AZ91铸造镁合金力学性能的影响   总被引:1,自引:1,他引:1  
对挤压变形前后的AZ91镁合金进行了微观组织和力学性能研究.结果表明:挤压成形后合金的抗拉强度和塑性均得到提高;孪晶的产生,导致挤压合金室温压缩的应力-应变曲线上有屈服平台出现;晶粒尺寸强烈影响合金的强度.室温时,挤压合金的流变强度较铸态的高,而高温压缩的强度则较铸态的低.  相似文献   

17.
Hot-extruded AZ31 alloy was subjected to compression at room temperature. The influence of grain size and grain orientation on the compression behavior of the specimens was examined by optical microscopy, compression test and X-ray diffraction. Abundant twins activated during compression of extruded AZ31 magnesium alloy. The hot extruded AZ31 magnesium alloys had a higher Hall–Petch slope for compression than that for tension.  相似文献   

18.
采用搅拌铸造法制备了不同体积分数(10vol%、15vol%、20vol%)的短碳纤维增强镁基(CFs/AZ91)复合材料,并选取了三个挤压比和两个挤压温度对其进行热挤压变形,采用光学显微镜(OM)、SEM和TEM对CFs/AZ91复合材料的显微组织进行了观察,并测试其室温力学性能及阻尼性能。研究结果表明,热挤压能够有效降低CFs/AZ91复合材料气孔率;在热挤压过程中,纤维沿挤压方向定向排列,同时基体发生动态再结晶。随着挤压温度及挤压比的增大,晶粒呈现等轴状,组织更加均匀。CFs/AZ91复合材料经过挤压后,其力学性能得到提高,屈服强度和抗拉强度随挤压比和CFs体积分数的增大而增大,然而CFs纤维在热挤压后发生明显断裂,限制了挤压态复合材料强度的进一步提升。低温低挤压比条件下,CFs/AZ91复合材料具有较好的阻尼性能,随着挤压比及挤压温度的升高,CFs/AZ91复合材料室温及高温阻尼性能均有所降低。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号