首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
采用高温固相法制备样品Li1.12Ni0.8Mn0.1Co0.1O2,采用XRD(X-ray diffraction)、SEM(Scanning electron microscope)、CV(Cycle voltammograms)和充放电循环等测试分析了材料的物理化学性质及电化学性能。XRD分析表明在合成温度为800℃时,所合成的产物为α-NaFeO2型的层状结构;SEM分析表明在合成温度为800℃时,产物为微小晶粒团聚成的球形颗粒。在40mA/g和2.5~4.3V的电压范围内,其首次放电比容量为184.1mAh/g,首次放电效率为85.9%。随着充放电次数的增多,材料的不可逆放电容量逐步减小,循环稳定性增强。循环20周后放电比容量仍能达到171.7mAh/g,容量保持率为93.26%。测试结果表明,800℃合成的正极材料Li1.12Ni0.8-Mn0.1Co0.1O2具有较高的放电比容量和优异的电化学稳定性。  相似文献   

2.
唐义会  曹传宝  文捷  翟华章  朱鹤孙 《功能材料》2004,35(Z1):1864-1866
固相反应法合成了新型锂离子电池正极材料LiFePO4,组装成电池后,室温下(23℃)初始比容量为110mAh/g.以蔗糖分解在LiFePO4电池材料的颗粒间覆碳的方法制备了改性的LiFePO4,对LiFePO4进行表面覆碳改性后其电化学性能包括比容量和充放电效率两方面都得到提高.覆碳后正极材料的初始比容量在室温下达到了140mAh/g,比覆碳前增加了30mAh/g,在循环20周后比容量仍维持在125mAh/g左右;覆碳后正极材料的平均充放电效率在23℃和50℃下分别为91%和93%.  相似文献   

3.
LiCoO2正极材料的络合法合成及其电化学性能研究   总被引:4,自引:0,他引:4  
采用络合法制备了锂离子电池的活性正极材料LiCoO2纳米粉体,实验表明:合成的LiCoO2粉体结晶良好,层状结构发育完善,平均粒径为60nm而且粒径分布窄,比表面积大.电池充放电测试表明,正极的电化学性能与LiCoO2粉体的合成温度有关,其中700°C合成得到的LiCoO2正极材料具有最优的电化学性能:首次放电比容量高达167mAh/g,30次循环后其可逆比容量仍高达144mAh/g,容量损失13.8%.  相似文献   

4.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

5.
以NaOH和NH3.H2O为共沉淀剂,采用共沉淀法合成了前驱体Ni1/3Co1/3Mn1/3(OH)2,将前驱体与LiOH.H2O混合球磨,经过高温处理(500℃下预烧4h,然后在900℃下焙烧12h)得到锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2。考察了前驱体合成过程中还原剂水合肼对前驱体组成及正极材料电化学性能的影响,采用SEM观测前驱体的形貌,XRD分析正极材料粉末的层状结构并计算其晶胞参数,通过充放电实验测试LIB正极材料的电化学性能。结果表明,当水合肼浓度为0.48mol/L时,所得正极材料具有良好的电化学性能,在2.5~4.6V电压范围内及0.1和1C倍率下,其首次放电比容量分别为193.2和174.8mAh/g;1C倍率下经30次循环后其容量为164.6mAh/g,容量保持率为94.16%。  相似文献   

6.
刘冬如  黄可龙  唐爱东  邹啸天 《功能材料》2005,36(5):687-688,691
利用高温固相分段加热法合成锂锰氧正极材料LiMn0.9Mo0.1O2,并对其进行了常温充放电、循环伏安、交流阻抗、电镜扫描等电化学性能测试。在2.0~4.3V电压范围内,其首次充电容量为160mAh/g,放电容量为158mAh/g;经10次充放电循环后,其充电容量为156mAh/g,放电容量为155mAh/g(对极为锂片);经SEM检测,该正极材料主要为正交型锂锰氧化物。  相似文献   

7.
杜运  张海朗 《化工新型材料》2013,41(3):101-103,107
采用溶胶-凝胶法合成层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13-xAlx]O2(x=0,0.05,0.13)。用X射线衍射(XRD)、循环伏安(CV)和充放电测试等手段对产物的结构及电化学性能进行了表征。结果表明:采用溶胶-凝胶法在900℃空气氛围下煅烧12h制备的Li[Li0.2Mn0.54Ni0.13Co0.08Al0.05]O2晶型较好,具有α-NaFeO2型层状结构。室温,2.0~4.8V下,0.1C倍率下最高放电比容量达到268.3mAh/g,0.2C倍率下循环50次后比容量依然高达238.1mAh/g,具有良好的电化学性能。  相似文献   

8.
采用氢氧化物共沉淀-高温固相焙烧法合成了富锂正极材料Li1+x[Ni0.36Mn0.64]1-xO2(x=0.12,0.15,0.18,0.2)。采用XRD表征其结构,SEM表征其形貌,恒电流充放电和循环伏安测试其电化学性能。其中,XRD结果表明各样品都具有α-NaFeO2型层状结构。结果表明:室温下以30mA/g的电流密度,在4.6~2.75V的电压范围内充放电,x=0.15的首次放电比容量为237.9mAh/g,经50次循环后容量保持率为98%。研究发现,层状富锂镍锰正极材料中的Li2MnO3组分在充放电过程中会逐渐向尖晶石相转变,这是容量衰减的主要原因。  相似文献   

9.
LiFePO4/C正极材料的液相合成及电化学性能研究   总被引:3,自引:0,他引:3  
采用磷酸三丁酯(TBP)为多功能反应物并添加表面活性剂PEG-4000合成了LiFePO4/C正极材料,利用XRD、SEM、XPS和滴定分析对产品进行了结构、表面形貌和化学组成表征.结果表明在650℃烧结15h所得产物结晶良好,为均匀分布在100nm左右的类球形颗粒.循环伏安曲线显示,该样品具有对称且尖锐的氧化还原电位峰,表明材料具有良好的电化学可逆性.在0.1mA/cm2电流密度下,其首次充放电比容量分别为162和158mAh/g,经100次循环后放电容量损失率仅为3.3%,当充放电密度增加到4mA/cm2时,材料的放电比容量仍然接近100mAh/g,倍率性能优良.  相似文献   

10.
采用络合法制备了锂离子电池的活性正极材料LiNi0.9Co0.1O2粉体,实验表明合成的LiNi0.9Co0.1O2粉体结晶良好,层状结构发育完善。电池充放电测试结果表明,其容量及循环性能与LiNi0.9Co0.1O2粉体的合成温度有关,其中900℃合成得到的LiNi0.9Co0.1O2材料具有最好的电化学性能,首次放电比容量高达120.5mAh/g,循环30次后可逆放电比容量仍高达118.8mAh/g,容量损失仅为1.4%。文中对容量退化的原因进行了分析。  相似文献   

11.
以氨水为络合剂,NaOH为沉淀剂,通过共沉淀制备了高致密、粒度均匀的球形前驱体Ni0.8Co0.1Mn0.1(OH)2.通过焙烧该前驱体和LiOH.H2O的混合物制备出球形锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.采用XRD、SEM、TEM、TGA/DSC以及恒流充放电测试对材料的结构、形貌和电化学性能进行表征.结果表明,球形前驱体是由纳米级一次颗粒团聚形成,而不是晶粒的长大,且反应时间对前驱体的形貌、粒径分布及振实密度有显著影响.750℃焙烧16 h后的正极材料,保持了完好的球形形貌,具有最佳的层状结构和电化学性能,振实密度最大(2.98 g/cm3),首次放电容量为202.4 mAh/g,倍率性能佳,在3C的放电电流下容量为174.1 mAh/g,且循环性能优良,在40次循环以后,放电容量保持率为92.3%.  相似文献   

12.
以NaCO3为沉淀剂,NH3·H2O为缓冲溶液,将NiSO4、CoSO4和MnSO4混合溶液共沉淀制备(Ni1/3Co1/3Mn1/3)CO3前驱体,将其在400-900℃热处理5h制备得(Ni1/3Co1/3Mn1/3)Ox氧化物。EDTA络合滴定、BET、XRD及SEM研究表明,随着热处理温度的升高,(Ni1/3Co1/3Mn1/3)Ox中过渡金属含量及结晶度随着增加,而比表面积却减小。(Ni1/3Co1/3Mn1/3)Ox与LiOH混合后在850℃热处理24h制备出LiNi1/3Co1/3Mn1/3O2材料,其结构、形貌及电性能的测试结果表明,前驱体在600℃条件下热处理制备的正极材料电化学性能最佳,其首次放电比容量为189.7mAh·g^-1,不同倍率循环60周后,循环保持率为92.4%。  相似文献   

13.
利用低共熔混合物LiNO3-LiOH为锂盐,与高密度前驱体Ni0.8CO0.2(OH)2混合烧结制备出了高密度锂离子电池正极材料LiNi0.8Co0.2O2.探讨了合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构,充放电测试表明在3.0~4.3V的电压范围内,首次放电比容量可达168mAh/g,充放电效率为95%.结果表明采用该工艺可以制备出电化学性能良好的高密度LiNi0.8Co0.2O2正极材料.  相似文献   

14.
三元层状正极材料的制备与电化学性能研究   总被引:1,自引:1,他引:0  
采用机械活化-高温固相法制备了锂离子电池正极材料LiCo1/3Mn1/3Ni1/3O2,研究了烧结时间与球磨时间对合成产物结构与性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。研究结果表明,优化实验条件下制得的材料具有良好的循环性能,在2.7~4.6V电压范围内,充放电电流值为20mA/g时,初始放电比容量为210.76mAh/g,30次循环后容量保持率为91.98%。  相似文献   

15.
LiNi0.85CO0.15-xAlxO2 samples (x=0.025, 0.05 and 0.10) were prepared by solid state reaction at 725℃ for 24 h from LiOH-H2O, Ni2O3, Co2O3 and Al(OH)3 under oxygen flow. Layered LiNiO2 simultaneously doped by Co-Al has been tried to improve the cathode performance. The results showed that substitution of optimum amount Al and Co for the Ni in LiNiO2 definitely had some beneficial effect on increasing the capacity and cycling behavior. When increasing x in LiNio.85CO0.15-xAlxO2, the initial discharge capacity decreased and its cyclability increased. Compromising high specific capacity and good cyclability, the optimum x in LiNi0.85Co0.15-xAlxO2 was x=0.05. As a consequence, LiNi0.85Co0.15-xAlxO2 had the first discharge capacity of 186.2 mAh/g and a capacity of 180.1 mAh/g after 10 cycles. Differential capacity vs voltage curves indicated that the co-doped LiNiO2 showed suppression of the phase transitions as compared with LiNiO2.  相似文献   

16.
溶胶-凝胶法制备尖晶石型LiMn_2O_4正极材料   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了锂离子电池正极材料锂锰氧化物。以Mn(NO3)2(50%)、LiOH·2H2O为原料,以柠檬酸为螯合剂制得前驱体,400℃预烧6h,再经750、850℃分别焙烧并保温6h得到粉体产物。XRD分析表明,所合成的产物为尖晶石型LiMn2O4;SEM观察结果表明,合成产物颗粒均匀,形貌规则。用其组装的电池经恒电流充放电测试,表明其初始比容量可达118.76mAh/g,具有良好的循环性能。  相似文献   

17.
通过水热法制备了石墨烯包覆量不同的石墨烯/富锂三元正极复合材料。采用X射线衍射仪、扫描电子显微镜和电化学交流阻抗等对包覆后富锂三元正极复合材料的物相结构、形貌及电化学性能进行了研究。结果表明:石墨烯包覆量为2%(质量分数)时,包覆效果较好,石墨烯/富锂三元正极复合材料首次库仑效率为89.6%,比富锂三元正极材料提高了17.16%,放电比容量为226.41mAh/g,比原材料提高了21.38mAh/g;以0.5C循环100次后石墨烯/富锂三元正极复合材料放电比容量可保持在154mAh/g,容量保持率为88%,比富锂三元正极材料提高了5.3%;石墨烯/富锂三元正极复合材料阻抗为75Ω,比富锂三元正极材料阻抗低50Ω。  相似文献   

18.
钴镍掺杂锰酸锂的电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法分别制备了钴掺杂和镍掺杂锰酸锂锂离子电池正极材料,同时制备了纯相锰酸锂进行比较.用电感耦合等离子发射光谱仪、X射线衍射仪、电子扫描电镜和电池性能测试系统对产物的组成、结构特征、微观表面形貌和恒流充放电性能进行了表征.结果表明:所制备的掺杂锰酸锂LiMn0.9 Ni0.1O2、LiMn0.9 Co0.1O2的结晶度高,无杂质相,材料颗粒的粒径均匀、表面光滑;首次放电比容量分别为114.7mAh/g和110.8mAh/g(0.5mA/cm,2.8~4.4V,vs.Li+/Li);50次循环后,放电比容量为107.2mAh/g和103.3mAh/g,50次循环比容量保持率分别达到94.1%和95.4%.  相似文献   

19.
LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料具有容量高、价格低等优点,被认为是最具发展前景的锂离子电池正极材料之一.但LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料本身存在充放电过程中容量衰减较快、倍率性能差和储存性能差等缺陷,影响了其进一步发展.本文以LiNi_(0.8)Co_(0.15)Al_(0.05)O_2为研究对象,采用共沉淀法制备氢氧化物前驱体,在前驱体的表面包覆一层Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2,制备成具有核壳结构的正极材料.通过XRD、SEM、EDX、电化学测试等分析手段,系统地研究了其结构、形貌以及电化学性能.分析表明:包覆改性后,LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料在0.1、0.2、0.5、1 C倍率下,材料的首次充放电比容量分别为167.6,160.1,150.4,138.5 mAh·g~(-1).由0.1到1C,包覆改性前后的正极材料的放电比容量衰减量由34.7 mAh·g~(-1)降为29.1 mAh·g~(-1),容量衰减百分比由22.1%降低到17.4%.综合性能分析认为,包覆改性后电化学性能有一定的改善.  相似文献   

20.
利用高压静电纺丝技术与溶胶凝胶法相结合制备出了锂离子电池正极材料LiM_(0.1)Ni_(0.4)Mn_(1.5)O_4(M:Co,Cr,Fe)纳米纤维。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)对材料的晶体结构和表面形貌进行了表征,并采用恒流充放电手段研究了材料在室温下的循环稳定性和倍率特性。结果表明:LiFe_(0.1)Ni_(0.4)Mn_(1.5)O_4材料以0.5C充放电循环100周后容量保持率高达95.5%,显示了良好的循环稳定性;而LiCr_(0.1)Ni_(0.4)Mn_(1.5)O_4材料以10C放电比容量仍高达120mAh/g,显示出了极好的倍率特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号