首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
颗粒增强金属基复合材料疲劳研究进展   总被引:2,自引:0,他引:2  
对近年来颗粒增强金属基复合材料的疲劳研究进行了总结,从疲劳裂纹萌生及疲劳裂纹扩展方面讨论了其疲劳行为及机理,总结了增强颗粒特性、基体特性对其疲劳性能的影响,展望了颗粒增强金属基复合材料疲劳研究的发展前景。  相似文献   

2.
许章华  谢志雄  康茂东  王俊  董仕节  彭志贤  刘静 《材料导报》2021,35(22):22115-22120
采用TlG焊对K4169高温合金薄片中铸造组织缺陷进行修复,并对修复前后的合金薄片进行疲劳性能测试和显微组织分析.结果表明:铸造缺陷对合金薄片疲劳性能的影响很大,含铸造缺陷的合金薄片疲劳寿命不到3万周次,而不含铸造缺陷的合金薄片疲劳寿命达7.1万周次.含铸造缺陷的样品经过TlG焊接修复后,疲劳寿命仍达6~9万周次,接近甚至超过了不含缺陷的试样疲劳寿命,这表明合适的焊接修复方法不会降低高温合金薄片的疲劳性能.铸件焊接修复后疲劳寿命高的原因是,焊缝中析出的较粗大相数量多、分布均匀,且疲劳裂纹扩展过程中产生较多的二次裂纹引发了裂纹偏移和扩展路径增长.  相似文献   

3.
铸件中孔洞缺陷对疲劳性能影响的研究进展   总被引:1,自引:0,他引:1  
孔洞类缺陷对铸造合金材料的疲劳性能影响很大,从疲劳裂纹的萌生到疲劳裂纹的扩展等各环节都会受到孔洞类缺陷特征因素(如孔洞尺寸、形貌特性、位置分布、体积分数等)的影响.本文分析了当前在这方面研究的成果及进展,认为有关孔洞类缺陷的疲劳模型尚不完善,复杂载荷下的疲劳行为以及铸造材料微观结构对疲劳性能影响的研究有待进一步深入研究...  相似文献   

4.
目的 研究ZTA15铸造钛合金的高周疲劳性能及其疲劳断裂微观机理。方法 测试ZTA15铸造钛合金的室温轴向拉伸高周疲劳性能,并对合金的金相组织和断口形貌进行观察与分析。结果 随着应力比的提高,ZTA15铸造钛合金的疲劳强度相应提高,疲劳寿命也相应延长。应力比为?1、0.06、0.5时,相应ZTA15铸造钛合金的中值疲劳强度分别为341.5、512.5、643 MPa。疲劳断口形貌显示,疲劳裂纹多萌生于试棒的表面和次表面,裂纹萌生区呈类解理断裂特征。裂纹扩展区可以观察到明显的疲劳辉纹、扩展台阶和二次裂纹等典型特征。结论 疲劳失效机理和疲劳性能差异与合金的显微组织有一定的关系。应力比对疲劳性能的影响主要作用于疲劳裂纹的萌生和扩展阶段。  相似文献   

5.
电磁铸造与普通连续铸造2024铝合金的组织性能对比   总被引:2,自引:0,他引:2  
采用电磁铸造技术和普通连续铸造技术铸造了2024变形铝合金,采用光学显微镜和扫描电镜分析了其显微组织,而且对其进行了固溶处理加人工时效。结果表明电磁铸造锭内部组织细小均匀,有高的硬度和良好的疲劳性能,电磁铸造试样的硬度大约是普通连续铸造铸坯的2倍,疲劳性能是普通连续铸造铸坯的3倍。电磁铸造铸坯还有良好的耐磨性,磨损失重量是普通连续铸造的一半。  相似文献   

6.
表面处理镁合金疲劳性能的研究现状   总被引:2,自引:1,他引:1  
随着镁合金应用的日益广泛,其疲劳性能也越来越受到人们的重视.对近年来有关表面处理镁合金疲劳性能的研究进行了总结,归纳了喷丸处理、滚压强化、阳极氧化、激光熔融等表面处理方法对镁合金疲劳性能的影响及机理.最后对改善镁合金疲劳性能未来应重点发展的表面处理技术进行了展望.  相似文献   

7.
《真空》2019,(6)
针对钛合金表面硬度较低、耐磨性较差、易高温氧化等缺陷,选择适当的表面处理技术能够使其得以改善。由于钛合金对疲劳性能十分敏感,在表面处理过后,对其疲劳性能有较大影响。因而本文归纳了钛合金表面处理的多种方法,如电镀、化学镀、热喷涂、激光处理、阳极氧化、微弧氧化、物理气相沉积技术等。根据钛合金疲劳断裂现状及表面改性技术的特点,讨论了表面技术的应用、材料的选择和结构的设计对钛合金基体疲劳性能的影响。分析并总结了涂层在疲劳断裂过程起到的作用及影响疲劳性能的的主要原因,展望了未来钛合金表面改性方法、涂层材料及结构的研究趋势。以期为制备高强度、耐摩擦磨损和提升钛合金基体疲劳性能的表面改性涂层提供参考。  相似文献   

8.
采用医用钴铬钼合金,通过精密铸造技术制得多孔股骨柄毛坯,经高温烧结钴铬钼颗粒在其表面制得多孔层。对高温烧结前和烧结后的股骨柄的室温拉伸性能进行了比较,并根据国际标准对股骨柄柄部和头颈部的疲劳性能分别进行了试验。结果表明:高温烧结后的股骨柄相比于烧结前的股骨柄,其室温力学性能显著下降,其柄部和头颈部的疲劳性能满足标准要求。疲劳性能测试后头颈部偏置不超过5mm,对人体步态和下肢长度不造成明显的影响。  相似文献   

9.
孔洞对铸造铝合金疲劳性能的影响   总被引:2,自引:0,他引:2  
研究了铸造铝合金中孔洞在裂纹萌生、扩展过程中发挥的作用,孔洞的尺寸、体积分数、分布位置、形貌率等因素对材料的疲劳性能有重要影响.从试验现象和疲劳寿命模型两个方面综述了国内外学者研究的最新进展,指出了应力-寿命模型与线弹性断裂模型之间的内在联系,并讨论了存在的问题及研究方向.  相似文献   

10.
本文运用MSC.Patran/Nastran/Fatigue软件,对典型船舶纵向构件进行了疲劳寿命分析,讨论了三种不同因素对节点处的疲劳寿命的影响,并总结了其变化规律。  相似文献   

11.
This study is concerned with the effects of HIPping on high-cycle fatigue properties of investment cast A356 Al alloys. Tensile and high-cycle fatigue tests were conducted on cast alloys, two of which were HIPped, and then the test data were analyzed in relation with microstructures, tensile and fracture properties, and fatigue fracture mode. Eutectic Si particles were homogeneously dispersed in the matrix of the casting A356 Al alloys, but there were many large pores formed as casting defects. The high-cycle fatigue test results indicated that fatigue strength of the HIPped alloys was higher than that of the non-HIPped alloys because of the significant reduction in volume fraction of pores by HIPping. In the non-HIPped specimens, fatigue cracks initiated at large pores adjacent to the specimen surface and then propagated down to several hundreds micrometers depth while coalescing with other large pores. On the other hand, the HIPped specimens, where pores did not affect the fatigue much, fatigue cracks initiated at eutectic Si particles and propagated along them, thereby leading to improved fatigue strength by 40 to 50% over the non-HIPped specimens.  相似文献   

12.
The purpose of this paper is to define a thermo‐mechanical fatigue criterion in order to predict the failure of aluminum alloys components issued with the lost foam casting process and used in particular in the automotive industry. The microstructure of the studied materials (A356–A319 aluminum alloys) is clearly affected by the lost foam casting process which can directly affect the mechanical properties, the damage mechanisms and the fatigue failure of specimens and components. The major problem in defining a predictive fatigue criterion in this case is the fact that it should be applicable for the component which is submitted to complex multiaxial thermo‐mechanical loadings. Since many years, energy‐based criteria have been used to predict fatigue failure of this class of materials. Then, different energy‐based criteria are tested in order to take into account different types of triaxiality and mean stress effects corrections. The fatigue lifetime results predicted by both of them show a good agreement with experimental results.  相似文献   

13.
In this article, numerical simulations of cyclic behaviors in light alloys are conducted under isothermal and thermo-mechanical fatigue loadings. For this purpose, an aluminum alloy (A356) which is widely used in cylinder heads and a magnesium alloy (AZ91) which can be applicable in cylinder heads are considered to study their stress–strain hysteresis loops. Two plasticity approaches including the Chaboche’s hardening model and the Nagode’s spring-slider model are applied to simulate cyclic behaviors. To validate obtained results, strain-controlled fatigue tests are performed under low cycle and thermo-mechanical fatigue loadings. Numerical results demonstrate a good agreement with experimental data at the mid-life cycle of fatigue tests in light alloys. Calibrated material constants based on low cycle fatigue tests at various temperatures are applied to models to estimate the thermo-mechanical behavior of light alloys. The reason is to reduce costs and the testing time by performing isothermal fatigue experiments at higher strain rates.  相似文献   

14.
TiNi基形状记忆合金的疲劳行为研究现状   总被引:1,自引:0,他引:1  
李艳锋  米绪军  高宝东  谭冀 《材料导报》2007,21(6):84-86,95
疲劳性能是评价形状记忆合金优劣的重要指标之一.对TiNi基形状记忆合金的疲劳概念进行了延伸,详尽介绍了旋转弯曲疲劳法(Bending rotation fatigue)测试形状记忆合金的疲劳性能,总结了记忆效应疲劳和超弹性疲劳的机理和研究现状.此外,指出了现阶段形状记忆合金疲劳行为研究存在的不足.  相似文献   

15.
Effects of added Al–5Ti–B master alloys on precipitation of iron-rich intermetallics and mechanical properties of A356 cast alloys with high Fe content (1.5?wt-%) were investigated using image analysis, scanning electron microscopy, and tensile testing. Results show that added Al–5Ti–B has apparent refinement on α (Al) grain size of A356 alloys that have high Fe content. 12?wt-% Al–5Ti–B is beneficial for improving mechanical properties of A356 cast alloys with high Fe content. Improved mechanical properties can be attributed to refined microstructure, the proper amounts of TiB2 and Ti(AlSi)3, and decreased porosity. An excessive amount of Al–5Ti–B deteriorates mechanical properties of alloys because it leads to the formation of large secondary intermetallics and increased porosity.  相似文献   

16.
Abstract

In this article, out-of-phase thermo-mechanical fatigue (TMF) behaviours of light alloys were investigated in comparison to their high temperature low cycle fatigue (LCF) behaviours. For this objective, strain based fatigue tests were performed on the A356 aluminium alloy and on the AZ91 magnesium alloy. Besides, TMF tests were carried out, where both strain and temperature changed. The fatigue lifetime comparison demonstrated that the TMF lifetime was less than that one under LCF loadings at elevated temperatures for both light alloys. The reason was due to severe conditions in TMF tests in comparison to LCF tests. The temperature varied in TMF test but it was constant under LCF loadings. As the other reason, the tensile mean stress occurred under TMF loadings, in comparison to the compressive mean stress under LCF loadings. At high temperatures, the cyclic hardening behaviour occurred in the AZ91 alloy and the A356 alloy had the cyclic softening behaviour.  相似文献   

17.
Abstract— A systematic study of the fatigue crack growth characteristics and mechanisms in Al–Si–Mg and A356 casting alloys was carried out. Compact tension specimens, prepared from modified and unmodified alloys were tested at different stress ratios and stress intensity factor range values, and a study of the mechanistic role of the silicon particles in influencing the fracture behaviour during fatigue crack propagation was made, employing both optical and scanning electron microscopy. The results indicated that the fatigue crack growth behaviour of the alloys is affected by the stress ratio, stress intensity level and the size, shape and distribution of the eutectic silicon particles. The particle characteristics also determine the fracture mode of the alloy. Fracture Characteristics observed include decohesion of the silicon particles from the aluminum matrix; silicon particle cleavage/cracking; and striations in the aluminum phase, particularly at high stress ratios.  相似文献   

18.
Some techniques used to study fatigue of cast irons are discussed and used to study the structure-property relationships in graphitic cast irons. A wide range of cast irons have been assessed to give a better understanding of the effects of metallurgical structure and graphite morphology on the fatigue behaviour of these materials. It is concluded that the ‘true’ fatigue strength reduction factor is one of the most significant parameters by which to consider improvements in fatigue properties. Increasing the amount of spheroidal graphite is suggested as a method of improving the fatigue properties of CG cast irons and yielding alloys with great potential importance.  相似文献   

19.
Fatigue strength optimization of cast aluminium alloys requires an understanding of the role of micropores resulting from the casting process. High cycle fatigue tests conducted on cast A356‐T6 show that the pore size and proximity to the specimen surface significantly influence fatigue crack initiation. This is supported by finite element analyses (both elastic and elastic–plastic) which demonstrate that high stress/strain concentration is induced by pores which are both large and near to the specimen surface. A new pore‐sensitive model based on a modified stress‐life approach has been developed which correlates fatigue life with the size of the failure‐dominant pore. The model prediction is in good agreement with experimental data.  相似文献   

20.
High cycle fatigue (HCF) life in cast Al-Mg-Si alloys is particularly sensitive to the combination of microstructural inclusions and stress concentrations. Inclusions can range from large-scale shrinkage porosity with a tortuous surface profile to entrapped oxides introduced during the pour. When shrinkage porosity is controlled, the relevant microstructural initiation sites are often the larger Si particles within eutectic regions. In this paper, a HCF model is introduced which recognizes multiple inclusion severity scales for crack formation. The model addresses the role of constrained microplasticity around debonded particles or shrinkage pores in forming and growing microstructurally small fatigue cracks and is based on the cyclic crack tip displacement rather than linear elastic fracture mechanics stress intensity factor. Conditions for transitioning to long crack fatigue crack growth behavior are introduced. The model is applied to a cast A356-T6 Al alloy over a range of inclusion severities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号