首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用三聚氰胺聚磷酸盐(MPP)和次磷酸铝(PAH)为阻燃剂,马来酸酐接枝聚乙烯(PE-g-MAH)为相容剂,通过熔融共混,制备阻燃木粉(WF)-高密度聚乙烯(HDPE)复合材料(HDPE/WF)。探索了三聚氰胺聚磷酸盐(MPP)与次磷酸铝(PAH)组成的二元体系中MPP与PAH的最佳质量比,采用极限氧指数(LOI)和垂直燃烧(UL-94)研究了阻燃HDPE/WF的阻燃性能,采用热重分析(TGA)研究了阻燃HDPE/WF的热分解过程,用扫描电镜(SEM)观察了阻燃HDPE/WF燃烧炭层的形貌。结果表明:当MPP和PAH的质量比为3∶2时,阻燃HDPE/WF的阻燃效果达到最好,LOI值为29.6%,垂直燃烧UL-94通过V-0级。TGA研究表明:MPP/PAH阻燃体系对HDPE/WF的热起始分解温度没有太大影响,但却提高了材料在高温时的热稳定性,同时提高材料的成炭性能。通过SEM观察得到:炭层密度增加,有效阻止了氧气入到材料的内部并降低了导热性,也使得内部可燃性气体无法逸出,从而提高材料的阻燃性。  相似文献   

2.
Al_2O_3·3H_2O和Mg(OH)_2在HDPE中阻然机理的热分析研究   总被引:1,自引:0,他引:1  
采用热分析和燃烧试验研究了HDPE热氧降解与其燃烧的内在联系,探索了Al_2O_3·3H_2O、Mg(OH)_2在HDPE中的阻燃机理和它们混合使用时产生的阻燃协同作用,提出了选择阻燃剂应遵循阻燃剂分解温度必须与聚合物分解温度相近的原则。  相似文献   

3.
目的为提高发射药塑料包装箱的阻燃性能,设计一种新型阻燃改性HDPE塑料箱。方法利用燃烧和相容性实验研究了十溴二苯醚和三氧化二锑2种阻燃剂含量、比例对HDPE塑料阻燃性能和相容性的影响,并通过理论分析探讨了2种阻燃剂对HDPE塑料的阻燃机理。结果实验结果表明,未经阻燃改性的HDPE塑料阻燃效果较差,随着阻燃剂含量的增加,阻燃性能得到提高,相容性变差。结论阻燃剂中十溴二苯醚和三氧化二锑的质量比为2∶1时,阻燃效果最佳,阻燃剂含量(质量分数)低于11%时,可以满足相容性要求。  相似文献   

4.
以次磷酸铝(AHP)为阻燃剂对高密度聚乙烯(HDPE)基木塑复合材料进行阻燃改性。采用锥形量热、垂直燃烧、极限氧指数(LOI)系统评价复合材料的阻燃性能。通过拉伸强度、无缺口冲击强度、弯曲强度等测试,探讨了复合材料的力学性能。并通过热失重分析、扫描电镜对AHP阻燃木粉/HDPE(WF/HDPE)复合材料的机理进行分析。结果表明,AHP、木粉(WF)及WF中的结合水构成膨胀阻燃体系,AHP质量分数为30%时,WF/HDPE复合材料达到垂直燃烧V-0级别,LOI值达到25.5%,阻燃性能显著提高。AHP的加入使WF/HDPE复合材料的力学性能有所下降。  相似文献   

5.
通过采用Mg(OH)2阻燃剂和复合阻燃剂对HDPE阻燃的对比实验,得出了复合阻燃剂对HDPE热解性能、阻燃性能、物理机械性能的影响都优于氢氧化镁阻燃剂。结果表明,Mg(OH)2/Br-Sb复合阻燃体系是一种阻燃效果较好的新型阻燃体系。  相似文献   

6.
OMMT共混改性HDPE/MH无卤阻燃体系研究   总被引:2,自引:0,他引:2  
通过纳米有机蒙脱土(OMMT)改性高密度聚乙烯(HDPE),纳米氢氧化镁(MH)无卤复合阻燃体系。研究了有机蒙脱土的用量对体系阻燃性能、力学性能及流变性能的影响。实验结果表明:OMMT单独对HDPE阻燃改性效果较差,它和MH复配可产生协同阻燃效果,但MH添加质量分数需在HDPE的60%以上方可有效阻燃。当m(HDPE):m(MH):m(OMMT)为100:60:6时,复合材料具有较好的阻燃性能和力学性能。HDPE/MH/OMMT熔体为假塑性流体,OMMT添加质量分数超过HDPE添加质量分数的6%时,会使体系在低剪切速率下的黏度大幅增加,流动性能降低。同时,0MMT的增加会导致熔体假塑性程度增加。  相似文献   

7.
水镁石短纤维增强HDPE/EPDM 无卤阻燃复合材料的研究   总被引:5,自引:0,他引:5  
本文着重研究了水镁石短纤维增强HDPE/E PDM 复合材料的力学性能、介电性能以及水镁石短纤维的阻燃效果, 对水镁石短纤维和粒状无卤阻燃剂填充HDPE/E PDM 复合体系的拉伸性能、介电性能和阻燃效果进行了对比研究。并采用动态力学谱、SEM 等方法对该体系的微观结构进行了分析, 结果表明, 水镁石短纤维对复合体系除具阻燃作用外, 还具有显箸的增强作用。  相似文献   

8.
采用聚磷酸铵(APP)与纳米SiO_2阻燃水稻秸秆/高密度聚乙烯(HDPE)木塑复合材料,通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜等研究了复合材料的界面,力学,阻燃性能及热降解行为。研究结果表明,当添加17%(wt,质量分数,下同)的APP与3%的纳米SiO_2时达到V-0级,极限氧指数提高了30.8%。拉伸强度提高了42.8%,弯曲强度提高51.9%,冲击强度提高了73.9%。TGA与SEM研究表明,APP与纳米SiO_2对木塑复合材料具有阻燃协效效应,APP使秸秆粉碳化同时膨胀发泡,纳米SiO_2加固炭层是阻燃的主要原因。  相似文献   

9.
以改性天然碳水化合物结合碱式硫酸镁晶须(MHSH)混杂纤维为协效剂,结合膨胀阻燃剂(IFR)制备了阻燃型聚丁二酸丁二醇酯(PBS)木纤维复合材料。利用极限氧指数和垂直燃烧测试研究了复合材料的阻燃性能,并采用TG/DTA-MS对复合材料的热解过程、吸放热量和热解燃烧气体产物进行了分析。结果表明,5%的木薯渣作为碳源代替PBS提高了材料的阻燃性能。IFR/木薯渣/MHSH阻燃剂能够有效提高PBS的燃烧初始温度,并缩小燃烧温度范围。阻燃材料燃烧时,首先是IFR受热分解产生不可燃气体氨气在材料表层形成第一层阻燃保护层;其次,材料迅速燃烧产生的炭层形成第二层阻燃保护层;最后,在高温段MHSH分解形成第三层协效阻燃保护层。因此,最终形成了由外层不可燃气体氨气和内层天然碳水化合物MHSH膨胀炭层构成的气-固阻燃屏障,从而有效地提高了复合材料的阻燃性能。  相似文献   

10.
以多聚磷酸铵、季戊四醇、氯化亚锡为原料组成膨胀型阻燃系统,研究氯化亚锡添加量对膨胀型阻燃系统复合酚醛泡沫的极限氧指数、燃烧热量释放速率、燃烧总热释放量、有效燃烧热量、耗氧量、烟气释放、有毒气体释放等的影响。研究结果表明阻燃体系复合泡沫的极限氧指数在72.8%~74.5%之间,展现出良好的阻燃性,阻燃体系对酚醛泡沫的阻燃符合气相阻燃的机理,并且在氯化亚锡添加量为1.5%时,阻燃体系复合泡沫的阻燃性能最优。  相似文献   

11.
采用二乙基次磷酸铝(AlPi)复配超支化三嗪大分子成炭剂(EA)对聚对苯二甲酸丁二醇酯(PBT)进行无卤阻燃改性。通过氧指数、UL-94垂直燃烧及锥形量热测试研究了阻燃体系的阻燃性能,通过热失重分析(TGA)研究了复配阻燃体系的热性能,采用扫描电镜(SEM)观察阻燃体系燃烧炭层的形貌。研究表明,AlPi与EA复配比例为7∶3时阻燃效果最好,材料氧指数达到34.6%,通过UL-94V-0级,热释放速率峰值(PHRR)降低至653kW/m2;热重分析表明,复配阻燃体系的加入促进了PBT的提前分解成炭,增加了阻燃PBT的残炭量;燃烧炭层扫描电镜说明,复配阻燃体系能形成连续致密的膨胀炭层,提高阻燃效果。  相似文献   

12.
通过对膨胀阻燃聚丙烯材料在锥形量热仪实验条件下燃烧的分析和研究,建立了能够描述膨胀阻燃材料升温、燃烧过程的传热传质数学模型,分析了传热传质对材料裂解行为的影响.实验中测量了纯聚丙烯及膨胀阻燃聚丙烯在膨胀燃烧过程中的样品质量损失、质量损失速率、热释放速率和内部温度随时间变化规律.通过理论分析及实验比较发现,不同的传热传质过程,对样品裂解、燃烧及热化学行为的影响非常大.膨胀阻燃聚丙烯的传热传质过程可减缓裂解、燃烧行为.DSC的分析结果表明,炭层对传热传质的阻隔作用使膨胀阻燃聚丙烯的热稳定性增强,放热峰值降低.  相似文献   

13.
通过极限氧指数测定、垂直燃烧实验和锥型量热分析研究了二丙基次磷酸铝(ADPP)对尼龙6(PA6)的阻燃作用。结果表明,ADPP对PA6具有良好的阻燃效果。当ADPP添加量为15%时,阻燃PA6的LOI就高达30.7%,阻燃等级达V-0。与未阻燃PA6相比,燃烧时的热释放速率和质量损失速率显著降低,但累计热释放量略有增大。热重和残余物分析结果表明,ADPP是通过气相和凝聚相同时产生阻燃作用的。一方面它通过分解成不挥发性磷酸铝和促进PA6成炭,形成膨胀层而产生阻燃作用;另一方面,它分解成挥发性磷化物,在气相通过捕获燃烧产生的自由基而抑制燃烧。ADPP热稳定性良好,能满足聚酰胺的加工要求,但其使用明显降低了PA6的热稳定性。  相似文献   

14.
采用DCSB法点燃钛合金,研究了Ti40合金的阻燃烧行为.结果表明:Ti40合金具有良好的阻燃性能.Ti40合金的燃烧产物表面如同TC4合金开裂,而在其燃烧产物与基体的界面上富积Cr,形成致密的Cr2O3氧化物.在分析影响阻燃烧行为基础上,推导出钛合金阻燃能力的数学表达式,建立了钛合金阻燃的物理模型.  相似文献   

15.
利用微胶囊红磷(MRP)和聚苯醚(PPO)来提高高抗冲聚苯乙烯(HIPS)的阻燃性能, 通过熔融共混法制备了一系列不同组成的MRP-PPO/HIPS复合材料。采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能。研究表明, 阻燃剂用量相同时, 在HIPS基体中同时加入MRP和PPO得到的复合材料比单独加入MRP或PPO得到的复合材料具有更好的阻燃性能。当MRP-PPO/HIPS的质量比为10:20:70时, 复合材料的氧指数为23.9%, 水平燃烧级别达到FH-1级, 垂直燃烧级别达到FV-0级, 阻燃性能达到最佳。MRP用量过多时, 复合材料的阻燃性能下降。研究认为, PPO和MRP对HIPS具有较强的协同阻燃作用。两者以适当比例并用时能够使复合材料在燃烧时的热释放速率和燃烧热大幅度减小, 降低了气相燃烧区的温度, 起到气相阻燃作用。同时, 复合材料在热分解和燃烧时能够生成连续和致密的炭层, 抑制了燃烧过程中的热量传递和物质交换, 起到凝聚相阻燃作用。因此, 复合材料的阻燃性能显著改善。  相似文献   

16.
将生物质可再生资源木质素(Lig)和一种P-N-B系阻燃剂单独或复配使用添加到木粉/高密度聚乙烯(WF/HDPE)混合物中,通过挤出成型的方式制备Lig-WF/HDPE复合材料,探究了Lig对阻燃型Lig-WF/HDPE复合材料阻燃性能的影响。锥形量热仪测试结果表明,Lig的加入能有效降低Lig-WF/HDPE复合材料的热释放速率,提高残余物质量。Lig添加量为15wt%时Lig-WF/HDPE复合材料的阻燃效果最佳,但发烟量较大。Lig与P-N-B系阻燃剂复配使用可使(P-N-B)-Lig-WF/HDPE复合材料的发烟量明显降低,阻燃性能进一步提高。Lig添加量为5wt%、P-N-B系阻燃剂添加量为10wt%时,(P-N-B)-Lig-WF/HDPE复合材料的极限氧指数从未添加阻燃剂WF/HDPE复合材料的24.3提高到27.3,且力学性能较两种阻燃剂单独使用时有提升。   相似文献   

17.
阻燃理论的研究是整个阻燃技术的基础,目前国内研究人员已开始重视。一方面要研究各类纤维、织物的燃烧理论,还要研究阻燃剂在纤维上的阻燃机理.随着测试技术手段的发展,这方面的工作已成为可能。燃烧及阻燃理论研究可为寻找新型阻燃剂、确定阻燃方法、提高阻燃水平提供理论依据,具有重要的现实意义。  相似文献   

18.
合成纤维的燃烧与阻燃   总被引:1,自引:0,他引:1  
本文介绍了合成纤维 高聚物的燃烧性和影响燃烧的因素,以及合成纤维高聚物的阻燃机理和阻燃方法。  相似文献   

19.
三聚氰胺磷酸盐和季戊四醇在EVA中的阻燃研究   总被引:2,自引:0,他引:2  
研究了三聚氰胺磷酸盐(M P)和季戊四醇(PER)作为膨胀型阻燃剂(IFR)在乙烯-醋酸乙烯酯共聚物(EVA)中的阻燃作用。采用氧指数法和垂直燃烧法研究了M P和PER不同配比对EVA阻燃效果的影响。实验结果表明,M P和PER的配比不同对体系的阻燃有很大影响。在M P和PER总添加量为50%时,M P/PER质量比为2∶1时显示出最好的阻燃效果,阻燃EVA体系氧指数最高,垂直燃烧达到V-0级。采用热分析研究了膨胀型阻燃EVA体系的热分解特性,以及采用激光拉曼光谱等手段对材料燃烧后形成的膨胀炭层进行了表征。  相似文献   

20.
以1-氧-4-羟甲基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷(PEPA)和偏苯三甲酸酐(TMA)为原料合成了集阻燃固化功能于一体的化合物PEPA-TMA,并将其作为阻燃固化剂与三聚氰胺氰尿酸(MCA)复配,制备了不同含磷量的阻燃环氧树脂EP/PAPE-TMA/MCA。采用极限氧指数(LOI)和垂直燃烧(UL-94)研究了阻燃树脂的阻燃性能,采用热重分析(TGA)研究了阻燃树脂的热分解过程,用扫描电镜(SEM)观察了阻燃树脂燃烧炭层的形貌。研究结果表明,当含磷质量含量达到2.5%时,阻燃EP/PAPE-TMA/MCA体系的阻燃效果达到最好,LOI值为31.2%,垂直燃烧UL-94通过V-0级,800℃时材料的残炭量达到33.7%。TGA研究表明PEPA-TMA对EP/MCA体系的热起始分解温度没有太大影响,但提高了材料在高温时的热稳定性和成炭性能。通过SEM观察得到炭层密度增加,起到了隔热、隔氧作用,发挥了凝聚相阻燃作用。此外,MCA在燃烧过程中有NH_3等不燃气体逸出,有效地稀释了气相中的氧气浓度,发挥了气相阻燃作用,对材料的阻燃有协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号