首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
聚酰亚胺基活性炭的制备及其电化学性能的研究   总被引:1,自引:0,他引:1  
通过炭化和进一步KOH化学活化的方法制备了聚酰亚胺基炭材料, 并将其用作双电层电容器电极材料. 采用DFT、XPS方法对其孔结构和表面化学性质进行了研究, 并通过恒流充放电等方法探讨了其电化学特性. 结果表明: 样品CPI的质量比电容是双电层电容和表面氮原子(尤其是N-5)所提供的赝电容共同作用的结果. 经活化后, 样品API比表面积达到1941m2/g, 主要形成0.7~2.0nm之间的微孔, 氮原子的影响可以忽略, 在50mA/g的放电电流密度下质量比电容达300F/g, 且电流密度达到1000mA/g时, 电容保持率仍为86.1%; 交流阻抗测试也表明样品API具有良好的双电层电容特性, 是一种新型的双电层电容器电极材料.  相似文献   

2.
分别以毛竹和石油焦为炭前驱体,采用KOH活化法制备超级电容器用高比表面积活性炭材料,考察了碱/炭比对不同炭前驱体所制得的活性炭的孔结构、吸附性能和电容性能的影响。结果表明,在相同的碱/炭比下,竹基活性炭孔径2nm的微孔较发达,而石油焦基活性炭孔径在2~50nm的中孔率较高。在适宜的工艺条件下,以毛竹为炭前驱体可制得比表面积为2610.7m2/g,比电容为206F/g的活性炭材料;以石油焦为炭前驱体可制得比表面积为2597.9m2/g,比电容为213F/g的活性炭材料。  相似文献   

3.
杨旸  陈胜洲  陈伟平  林维明 《功能材料》2013,(19):2868-2873
六水氯化镁作为镁源,制备了粒径范围11~26nm的氧化镁,以纳米氧化镁为模板,将聚丙烯酰胺高温炭化,酸溶去模板,制备出高含氮量的多孔炭材料,并对材料进行XRD、SEM、孔径表征和电化学性能测试。结果显示,炭材料以层状为主,平均孔径为4.72nm,比表面积达1873m2/g;在1mol/L H2SO4电解液中,放电电流密度为1A/g时,电极材料的质量比电容达176F/g。  相似文献   

4.
六水氯化镁作为镁源,制备了粒径范围11~26nm的氧化镁,以纳米氧化镁为模板,将聚丙烯酰胺高温炭化,酸溶去模板,制备出高含氮量的多孔炭材料,并对材料进行XRD、SEM、孔径表征和电化学性能测试。结果显示,炭材料以层状为主,平均孔径为4.72nm,比表面积达1873m2/g;在1mol/LH2SO4电解液中,放电电流密度为1A/g时,电极材料的质量比电容达176F/g。  相似文献   

5.
孔结构对煤基活性炭电极材料电化学性能的影响(英文)   总被引:1,自引:1,他引:0  
以太西无烟煤为前驱体,NaOH为活化剂制备电化学电容器电极材料。采用N2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征。在1mol/L(C2H5)4NBF4/碳酸丙烯酯有机电解液体系中,研究了孔结构对活性炭电极材料的电化学性能的影响。结果表明:以NaOH为活化剂可制备出比表面积943mol/L~2479mol/L、比电容57F/g~167F/g的活性炭电极材料。活性炭电极材料的比电容不仅取决比表面积,而且与活性炭的孔径分布有关。孔径为2nm~3nm的中孔的存在可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而使电容器的电化学性能得到增强。  相似文献   

6.
微波法煤基活性炭的制备及其电化学性能研究   总被引:1,自引:1,他引:0  
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

7.
NaOH活化法中碱炭比对孔结构和电化学性能的影响   总被引:1,自引:0,他引:1  
采用沥青焦为原料,以NaOH化学活化法制备出不同碱炭比(R)系列活性炭.用氮气吸附和脱附等温线计算出BET比表面积、DFT孔径分布及孔容,并且通过直流循环充放电、循环伏安等表征方法研究了其电化学性能.实验结果表明,R值对活性炭的BET比表面积、DFT孔径分布及孔容有良好的调控作用:当R=5时,其最大BET比表面积为1089m2/g,孔容达0.53cm3/g,当R=3时,其孔径分布在1.0-2.0nm百分比达36.2%;其直流循环充放电曲线较好,循环伏安曲线也近似矩形,表明具有良好双电子层电容器电极材料特性,在3mol/L的KOH电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达202F/g、143F/cm3、32.9μF/cm2;在1mol/L(C2H5)4NBF4/Propylene Carbonate(PC)电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达149F/g、107.3F/cm3、20μF/cm2.对KOH和(C2H5)4NBF4/PC电解质吸附的最佳孔径分别为1.3nm,1.5nm左右.  相似文献   

8.
采用氧化交联淀粉还原高锰酸钾制备出了超级电容器纳米MnO2电极材料.通过XRD和SEM对电极材料进行了表征,采用电化学测试手段对电极材料在lmol/L Na2SO4溶液中的电容特性和比容量进行了分析.结果表明,采用该方法所制备的材料为无定型的(а-MnO2,颗粒尺寸在100~150nm左右;循环伏安和恒流充放电试验测试结果表明,а-MnO2电极具有良好的电容特性.在放电电流为100 mA/g时,其比容量高达158 F/g.  相似文献   

9.
朱刚 《化工新型材料》2014,(8):116-117,233
基于高锰酸钾和尿素之间的氧化还原反应,采用液相沉淀法制备了氧化锰材料。应用X-射线衍射、扫描电镜和氮气吸脱附技术对所得材料的结构、形貌和表面性质进行表征,结果表明,所得材料具有层状结构,为片状粒子。其比表面积为12m2/g,平均孔径为17nm。电化学测试结果显示,制备材料表现出优良的电容特性。当电流密度为0.50A/g时,比电容为172F/g。在20mV/s的扫描速度下,循环测试3500圈后比电容保持率为88%。  相似文献   

10.
常压干燥制备炭气凝胶及其电化学行为的研究   总被引:5,自引:7,他引:5  
以甲酚为原料,添加适量的间苯二酚,在氢氧化钠催化作用下与甲醛聚合,经溶胶凝胶、溶剂置换、常压干燥和900℃炭化过程可制备纳米多孔材料炭气凝胶。N2吸附测试表明所制备炭气凝胶BET比表面积高于500m^2/g,在8nm~20nm范围具有集中的孔径分布,适合于做双电层电容器的电极材料。采用电化学阻抗谱测试电极的电化学行为,结果显示炭气凝胶电极在1mol/L的H2SO4电解液中的体积比电容接近70F/cm^3,质量比电容最高达97F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号