首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鲍艳  王彤 《无机材料学报》2016,31(12):1269-1278
中空二氧化硅(SiO2)微球具有特殊的内部空腔、吸附渗透性好、物质传递可控等优异性能, 可储存负载并缓慢释放药物、香精、染料、菌素等客体分子, 因此在药物缓释、医学成像、环境保护以及化妆品等领域有着广阔的应用前景。根据国内外研究进展, 本文归纳对比了中空SiO2微球几种制备方法之间的优劣差异, 着重阐述了其作为缓控释载体表现出的持久性和高效性, 以及功能化的有机/无机杂化微球在响应性控释方面的优越性。并对中空SiO2微球作为新型缓控释载体的发展前景进行了展望。  相似文献   

2.
Aim: The objective of this work was to illustrate the suitability of montmorillonite (MMT) as a drug delivery carrier, by developing a new clay–drug composite of ranitidine hydrochloride (RT) intercalated in MMT. Methods: The MMT–RT composite was prepared by ion-exchange process. X-ray diffraction and Fourier transform infrared spectra were employed to confirm the intercalation of RT in the MMT interlayers. The prepared MMT–RT hybrid was coated with cationic polymer Eudragit® E-100 by oil-in-water solvent evaporation method. The release processes of RT from MMT–RT and MMT–RT/Eudragit® E-100 were monitored under in vitro condition in the gastric fluid. Results: X-ray diffraction and Fourier transform infrared spectra analysis indicated the intercalation of RT molecules within the clay lattice. The in vitro release studies showed that MMT–RT released RT in a controlled manner. In the case of MMT–RT/Eudragit® E-100, both the release rate and the release percentages noticeably increased in the presence of Eudragit® E-100, because of its effective exchange with intercalated RT molecules. The release kinetics followed parabolic diffusion mechanism. Conclusion: MMT has great potential as a drug delivery carrier with various scenarios. The dosage of the MMT–RT/Eudragit® E-100 can be in the tablet form. The hybrid material and polymer-coated hybrids are microparticles.  相似文献   

3.
Triggerable drug delivery systems enable on‐demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity. Recently, a number of new materials have been developed that exhibit sensitivity to visible light, near‐infrared (NIR) light, ultrasound, or magnetic fields. This responsiveness can be triggered remotely to provide flexible control of dose magnitude and timing. Here we review triggerable materials that range in scale from nano to macro, and are activated by a range of stimuli.  相似文献   

4.
A convenient methodology for the synthesis of photolabile crosslinked hyperbranched polyglycerol nanocapsules is presented. These nanocarriers selectively and efficiently bind ionic guest molecules. The stability of the host–guest complexes formed depends on the counterion of the guest molecules. Moreover, the control over guest binding can be achieved by modification of the polymer building blocks, in particular the outer shell. In addition, photo‐triggered degradation of the nanocarrier leads to efficient release of encapsulated guest molecules. This approach, using photolabile dendritic nanocarriers to bind and release guest molecules, is of particular relevance for biomedical applications where selective guest binding and controlled release are crucial.  相似文献   

5.
《Materials Letters》2004,58(3-4):329-332
Layered organic–inorganic hybrid nanocomposite, containing an organic dye in an inorganic interlayer was prepared using acid fuchsin (AF) as a guest in Mg–Al layered double hydroxide inorganic host by a self-assembly technique, with the Mg–Al ratio in the mother liquor of 4 and pH=7.5. Powder X-ray diffractogram shows that the basal spacing of the Mg–Al layered double hydroxide with nitrate as the intergallery anion expanded from 8.9 to 17.1 Å to accommodate the AF anion, for the formation of the Mg–Al layered double hydroxide-AF layered organic–inorganic hybrid nanocomposite (MAAF). Formation of such a material is useful for example for coating or controlled release purposes of dye for slow dyeing process.  相似文献   

6.
In this study, a silica xerogel-chitosan hybrid is utilized as a coating material to incorporate bone morphogenic protein-2 (BMP-2) on a porous hydroxyapatite (HA) scaffold for bone tissue engineering. BMP-2 is known as a therapeutic agent for improving bone regeneration and repair. Silica xerogel-chitosan hybrids have been used for the delivery of a growth factor as well as osteoconductive coatings. The biological properties of the hybrid coating incorporated with BMP-2 were evaluated in terms of the BMP-2 release behavior, osteoblastic cellular responses and in vivo performance. BMP-2 was continuously released from the hybrid coating layer on the porous HA scaffold for up to 6 weeks. The hybrid coating containing BMP-2 showed significantly enhanced osteoblastic cell responses in comparison with the hybrid coating and HA substrate. Consequently, new bone formation was significantly increased within the hybrid coating containing BMP-2. These results reveal that the hybrid coating containing BMP-2 has the potential to be used as a bone implant, whose osteogenic properties are promoted by the release of BMP-2 in a controlled manner for a prolonged period of time.  相似文献   

7.
Poly(ε‐caprolactone) (PCL)‐based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large‐scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir–Blodgett technique and layer‐by‐layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε‐caprolactone)‐based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer–Peppas model and Finite‐element analysis, are also employed to discern the observed guest‐release mechanisms.  相似文献   

8.
A closed‐loop “smart” insulin delivery system with the capability to mimic pancreatic cells will be highly desirable for diabetes treatment. This study reports a multiple stimuli‐responsive insulin delivery platform based on an explicit supramolecular strategy. Self‐assembled from a well‐designed amphiphilic host–guest complex formed by pillar[5]arene and a diphenylboronic acid derivative and loaded with insulin and glucose oxidase, the obtained insulin‐GOx‐loaded supramolecular vesicles can selectively recognize glucose, accompanied by the structure disruption and efficient release of the entrapped insulin triggered by the high glucose concentration as well as the in situ generated H2O2 and acid microenvironment during the GOx‐promoted specific oxidation of glucose into gluconic acid. Moreover, such a “smart” supramolecular theranostic nanoplatform is able to function as both a glucose sensor and a controlled insulin delivery actuator. In vivo experiments further demonstrate that this smart supramolecular nanocarrier shows fast response to hyperglycemic circumstances and can effectively regulate the glucose levels in a mouse model of type I diabetes.  相似文献   

9.
The vesicle is one of the most intriguing platforms for drug delivery, which is believed to improve drug efficacy. In the past few decades, a great deal of materials have been explored to make vesicles, including lipids, block copolymers, dendrons, erythrocyte membranes, and even DNA. Other than shape and size control, most efforts are focused on achieving certain functions, for example, an abundance of stimuli‐responsive features are introduced to vesicles, which can be applied to controllable release, such as pH, redox, light, radiation, enzyme etc. Besides, crosslinking or pegylation is used to increase vesicles' stability and elongate circulation time. By incorporating affinity ligands, vesicles can further accumulate to diseased cells or tissues to achieve targeting properties. Recently, multidrug delivery is believed to show a synergy effect in cancer therapy and has become a new direction in this field. However, coloading hydrophilic–hydrophobic small molecules, oligonucleotides, and peptides in the same size‐ and shape‐controlled vesicle through a stepwise manner with high efficiency is still challenging. Herein, a modularly designable vesicle is reported for sequential multiple loading based on frame‐guided assembly, which is believed to be an outstanding platform for drug delivery in the future.  相似文献   

10.
Coordination cages encapsulate a wide variety of guests in the solution state. This ability renders them useful for applications such as catalysis and the sequestration of precious materials. A simple and general method for the immobilization of coordination cages on alumina is reported. Cage loadings are quantified via adsorption isotherms and guest displacement assays demonstrate that the adsorbed cages retain the ability to encapsulate and separate guest and non‐guest molecules. Finally, a system of two cages, adsorbed on to different regions of alumina, stabilizes and separates a pair of Diels–Alder reagents. The addition of a single competitive guest results in the controlled release of the reagents, thus triggering their reaction. This method of coordination cage immobilization on solid phases is envisaged to be applicable to the extensive library of reported cages, enabling new applications based upon selective solid‐phase molecular encapsulation.  相似文献   

11.
Microenvironment‐responsive supramolecular assemblies have attracted great interest in the biomedical field due to their potential applications in controlled drug release. In this study, oxidation‐responsive supramolecular polycationic assemblies named CPAs are prepared for nucleic acid delivery via the host–guest interaction of β‐cyclodextrin based polycations and a ferrocene‐functionalized zinc tetraaminophthalocyanine core. The reactive oxygen species (ROS) can accelerate the disassembly of CPA/pDNA complexes, which would facilitate the release of pDNA in the complexes and further benefit the subsequent transfection. Such improvement in transfection efficiency is proved in A549 cells with high H2O2 concentration. Interestingly, the transfection efficiencies mediated by CPAs are also different in the presence or absence of light in various cell lines such as HEK 293 and 4T1. The single oxygen (1O2), produced by photosensitizers in the core of CPAs under light, increases the ROS amount and accelerates the disassembly of CPAs/pDNA complexes. In vitro and in vivo studies further illustrate that suppressor tumor gene p53 delivered by CPAs exhibits great antitumor effects under illumination. This work provides a promising strategy for the design and fabrication of oxidation‐responsive nanoassemblies with light‐enhanced gene transfection performance.  相似文献   

12.
The design and development of multifunctional nano-drug delivery systems (NDDSs) is a solution that is expected to solve some intractable problems in traditional cancer treatment. In particular, metal-organic frameworks (MOFs) are novel hybrid porous nanomaterials which are constructed by the coordination of metal cations or clusters and organic bridging ligands. Benefiting from their intrinsic superior properties, MOFs have captivated intensive attentions in drug release and cancer theranostic. Based on what has been achieved about MOF-based DDSs in recent years, this review introduces different stimuli-responsive mechanisms of them and their applications in cancer diagnosis and treatment systematically. Moreover, the existing challenges and future opportunities in this field are summarized. By realizing industrial production and paying attention to biosafety, their clinical applications will be enriched.  相似文献   

13.
Local antibiotics delivery is an efficient solution to reduce the risk of infections associated with orthopedic implant. This study aims to functionalize plasma-sprayed hydroxyapatite coated titanium (Ti–HA) hip joint implant material with cyclodextrins-polymer (polyCD)-based local drug delivery system for loading therapeutic molecules (e.g. antibiotics), to offer a sustainable drug delivery.The process of polyCD coating on Ti–HA material was optimized with the help of model guest molecule — toluidine blue O (TBO) for evaluating the efficacy of polyCD system. The obtained results clearly showed that polyCD's treatment can firmly coat on the Ti–HA material under the optimized processing parameters concerning the type of CD, thermal treatment temperature and duration. PolyCD system has been proven to have a high capacity of TBO adsorption and long release duration. In vitro study also showed non-cytotoxicity of polyCD functionalized samples to osteoblastic cells. Trial study with gentamicin revealed very promising potential of polyCD system for sustained delivery of antibiotics. To conclude, the study substantiates the prospective flexibility of drug choice when applying polyCD treated implants including antibiotics, antimitotic agents or other therapeutical molecules. One or more drugs can be loaded, thus synergism and multi-factorial effects are feasible.  相似文献   

14.
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host–guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.  相似文献   

15.
To achieve an excellent delivery effect of drug, stimuli‐responsive nano “gate” with physical blockage units is usually constructed on the surface of the mesoporous silica nanocarriers (MSNs). In nature, the aquaporins in cell membrane can control the transport of water molecules by regulating the channel wettability, which is resulted from the conformational change of amino acids in the channel. Inspired by this phonomenon, herein a new concept of free‐blockage controlled release system is proposed, which is achieved by controlling the wettability of the internal surface of nanopores on MSNs. Such a new system is different from the physical‐blockage controlled release system, which bypasses the use of nano “gate” and overcomes the limitations of traditional physical blockage system. Moreover, further studies have shown that the system can selectively release the entrapped doxorubicin in human breast adenocarcinoma (MCF‐7) cells triggered by intracellular reactive oxygen species (ROS) but not in normalhuman umbilical vein endothelial cells (HUVECs) containing ROS with low levels. The wettability‐determined free‐blockage controlled release system is simple and effective, and it can also be triggered by intracellular biological stimuli, which provides a new approach for the future practical application of drug delivery and cancer therapy.  相似文献   

16.
There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery.  相似文献   

17.
A long‐standing goal of DNA nanotechnology has been to assemble 3D crystals to be used as molecular scaffolds. The DNA 13‐mer, BET66, self‐assembles via Crick–Watson and noncanonical base pairs to form crystals. The crystals contain solvent channels that run through them in multiple directions, allowing them to accommodate tethered guest molecules. Here, the first example of biomacromolecular core–shell crystal growth is described, by showing that these crystals can be assembled with two or more discrete layers. This approach leads to structurally identical layers on the DNA level, but with each layer differentiated based on the presence or absence of conjugated guest molecules. The crystal solvent channels also allow layer‐specific postcrystallization covalent attachment of guest molecules. Through controlling the guest‐molecule identity, concentration, and layer thickness, this study opens up a new method for using DNA to create multifunctional periodic biomaterials with tunable optical, chemical, and physical properties.  相似文献   

18.
An overview of nanoclays or organically modified layered silicates (organoclays) is presented with emphasis placed on the use of nanoclays as the reinforcement phase in polymer matrices for preparation of polymer/layered silicates nanocomposites, rheological modifier for paints, inks and greases, drug delivery vehicle for controlled release of therapeutic agents, and nanoclays for industrial waste water as well as potable water treatment to make further step into green environment. A little amount of nanoclay can alter the entire properties of polymers, paints, inks and greases to a great extent by dispersing 1nm thick layered silicate throughout the matrices. The flexibility of interlayer spacing of layered silicates accommodates therapeutic agents which can later on be released to damaged cell. Because the release of drugs in drug-intercalated layered materials is controllable, these new materials have a great potential as a delivery host in the pharmaceutical field. The problem of clean water can be solved by treating industrial and municipal waste water with organoclays in combination with other sorbents like activated carbon and alum. Organoclays have proven to be superior to any other water treatment technology in applications where the water to be treated contains substantial amounts of oil and grease or humic acid.  相似文献   

19.
Conjugated polymers are attractive in numerous biological applications because they are flexible, biocompatible, cost‐effective, solution‐processable, and electronic/ionic conductive. One interesting application is for controllable drug release, and this has been realized previously using organic electronic ion pumps. However, organic electronic ion pumps show high operating voltages and limited transportation efficiency. Here, the first report of low‐voltage‐controlled molecular release with a novel organic device based on a conjugated polymer poly(3‐hexylthiophene) is presented. The releasing rate of molecules can be accurately controlled by the duration of the voltage applied on the device. The use of a handy mobile phone to remotely control the releasing process and its application in delivering an anticancer drug to treat cancer cells are also successfully demonstrated. The working mechanism of the device is attributed to the unique switchable permeability of poly(3‐hexylthiophene) in aqueous solutions under a bias voltage that can tune the wettability of poly(3‐hexylthiophene) via oxidation or reduction processes. The organic devices are expected to find many promising applications for controllable drug delivery in biological systems.  相似文献   

20.
Complete fusion of two selected cells allows for the creation of novel hybrid cells with inherited genetic properties from both original cells.Alternatively,via fusion of a selected cell with a selected vesicle,chemicals or genes can be directly delivered into the cell of interest,to control cellular reactions or gene expression.Here,we demonstrate how to perform an optically controlled fusion of two selected cells or of one cell and one vesicle.Fusion is mediated by laser irradiating plasmonic gold nanoparticles optically trapped between two cells (or a vesicle and a cell) of interest.This hot-particle-mediated fusion causes total mixing of the two cytoplasms and the two cell membranes resulting in formation of a new hybrid cell with an intact cell membrane and enzymatic activity following fusion.Similarly,fusion between a vesicle and a cell results in delivery of the vesicle cargo to the cytoplasm,and after fusion,the cell shows signs of viability.The method is an implementation of targeted drug delivery at the single-cell level and has a great potential for cellular control and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号