首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Mechanisms of hydration reactions in high volume fly ash pastes and mortars   总被引:5,自引:0,他引:5  
This paper describes investigations of high-volume fly ash (HVFA)-Portland cement (PC) binders, the physical and chemical properties of which have been characterized up to 365 days of curing. Physical investigations were made of compressive strength development, pore structure by porosimetry, and morphology by scanning electron microscopy. Chemical examination was conducted for solid phase composition and degree of hydration by X-ray diffraction and thermal analysis, and for pore-fluid composition by high pressure extraction and analysis.

Up to 365d the cement in the HVFA pastes is not fully hydrated. However, the ash participates in both early (sulpho-pozzolanic) and late (alumino-silicate) hydration reactions. In addition to the usual products of cement hydration, ettringite (AFt) has been identified as a product of the early hydration of the fly ash. It has not been possible to identify long term hydration products of fly ash which appear to be non-crystalline. A two-step mechanism for pozzolanic reaction between fly ash and Portland cement has been proposed involving: (a) depolymerization/silanolation of the glassy constituents of the ash by the highly alkaline pore fluids, followed by (b) reaction between solubilized silicate and calcium ions in solution to form C---S---H.  相似文献   


2.
The influences of colloidal nanoSiO2 (CNS) addition on fly ash hydration and microstructure development of cement–fly ash pastes were investigated. The results revealed that fly ash hydration is accelerated by CNS at early age thus enhancing the early age strength of the materials. However, the pozzolanic reaction of fly ash at later age is significantly hindered due to the reduced CH content resulting from CNS hydration and the hindered cement hydration, as well as due to a layer of dense, low Ca/Si hydrate coating around fly ash particles. The results and discussions explain why the cementitious materials containing nanoSiO2 had a lower strength gain at later ages. Methods of mitigating the adverse effect of nanoSiO2 on cement/FA hydration at later ages were proposed.  相似文献   

3.
The influences of colloidal nanoSiO2 (CNS) addition on fly ash hydration and microstructure development of cement–fly ash pastes were investigated. The results revealed that fly ash hydration is accelerated by CNS at early age thus enhancing the early age strength of the materials. However, the pozzolanic reaction of fly ash at later age is significantly hindered due to the reduced CH content resulting from CNS hydration and the hindered cement hydration, as well as due to a layer of dense, low Ca/Si hydrate coating around fly ash particles. The results and discussions explain why the cementitious materials containing nanoSiO2 had a lower strength gain at later ages. Methods of mitigating the adverse effect of nanoSiO2 on cement/FA hydration at later ages were proposed.  相似文献   

4.
Elevated curing temperature at early ages usually has a negative effect on the late-age strength of concrete. This article aims to study the mechanism of this phenomenon. The results show that elevated curing temperature at early ages has a negative effect on the late-age strength of hardened cement paste, but it has a greater negative effect on the late-age strength of cement mortar. After elevated temperature curing at early ages, the late hydration of cement is hindered, but the late reaction of fly ash is not influenced. Owing to the continuous reaction of fly ash, the late-age pore structure of cement–fly ash paste under elevated curing temperature is finer than that under standard curing temperature, and the late-age strength of cement–fly ash paste under elevated curing temperature is higher. However, the late-age strength of cement–fly ash mortar under elevated curing temperature is lower. Apparently, there are differences between the effects of elevated curing temperature on hardened paste and mortar. It is the deterioration of transition zone between hardened paste and aggregate that makes the negative effect of elevated curing temperature on the mortar (or concrete) be greater than the hardened paste. As the water-to-binder ratio decreases, the negative effect of elevated curing temperature on the transition zone tends to be less.  相似文献   

5.
王倩楠  顾春平  孙伟 《材料导报》2017,31(23):85-89
超高性能混凝土(UHPC)具有卓越的力学性能和耐久性能,应用前景广阔。采用扫描电镜背散射电子图像、热重法和氮气吸附法系统研究了水泥-粉煤灰-硅灰基UHPC浆体水化过程中微观结构的演变过程。结果表明:UHPC浆体在早期水泥水化较快,但7d后水化变得较为缓慢,粉煤灰在UHPC浆体中反应较为缓慢,28d时反应程度仅为7%;UHPC浆体中Ca(OH)2含量早期上升快速,由于硅灰和粉煤灰的火山灰反应逐渐消耗,3d后含量开始下降,但28d时浆体中仍存在部分Ca(OH)2;此外,在水化过程中,UHPC浆体的比表面积不断降低,孔隙率逐渐下降,水化产物变得更为致密。  相似文献   

6.
The effects of the type of fly ash, mix proportion, and curing process on the pozzolanic reaction of fly ash–cement paste were investigated by ultrasonic techniques. Specifically, the speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were used to investigate hydration activities of the fly ash–cement composite. SOS provided direct evidence of the delay in the hydration activity caused by mixing fly ash to the cement. The rapid heat of evolution during hydration activity, as indicated by a rapid increase in SOS, resulted in early stiffening of the Class C fly ash–cement composite. However, Class C fly ash–cement composite achieved a lower elastic modulus compared with Class F fly ash–cement composite. The hydration activity is observed to be highly dependent on the type of fly ash substituted for cement in the composite. The BUA provided the indirect evidence of ionic activities occurring during the hydration period and viscoelastic properties of the material.  相似文献   

7.
To clarify the strength improvement mechanism of gap-graded blended cements with a high amount of supplementary cementitious materials, phase composition of hardened gap-graded blended cement pastes was quantified, and compared with those of Portland cement paste and reference blended cement (prepared by co-grinding) paste. The results show that the gap-graded blended cement pastes containing only 25% cement clinker by mass have comparable amount of gel products and porosity with Portland cement paste at all tested ages. For gap-graded blended cement pastes, about 40% of the total gel products can be attributed to the hydration of fine blast furnace slag, and the main un-hydrated component is coarse fly ash, corresponding to un-hydrated cement clinker in Portland cement paste. Further, pore size refinement is much more pronounced in gap-graded blended cement pastes, attributing to high initial packing density of cement paste (grain size refinement) and significant hydration of BFS.  相似文献   

8.
This study investigated the hydration properties of Type I, Type III and Type V cements, mixed with municipal solid waste incinerator fly ash, to produce slag-blended cement pastes. The setting time of slag-blended cement pastes that contained 40% slag showed significantly retardation the setting time compared to those with a 10% or even a 20% slag replacement. The compressive strength of slag-blended cement paste samples containing 10 and 20% of slag, varied from 95 to 110% that developed by the plain cement pastes at later stages. An increased blend ratio, due to the filling of pores by C-S-H formed during pozzolanic reaction tended to become more pronounced with time. This resulting densification and enhanced later strength was caused by the shifting of the gel pores. It was found that the degree of hydration was slow in early stages, but it increased with increasing curing time. The results indicated that it is feasible to use MSWI fly ash slag to replace up to 20% of the material with three types of ordinary Portland cement.  相似文献   

9.
针对大掺量粉煤灰、矿渣粉导致干混砂浆早期强度和后期强度较低的问题,研究脱硫石膏对该干混砂浆性能的影响;采用X射线衍射、扫描电镜及孔结构分析等手段进行微观机理讨论。结果表明,在大掺量粉煤灰矿粉干混砂浆中掺加占胶凝材料总质量6%~8%的脱硫石膏,对和易性无不良影响,并可显著提高浆体的抗压强度及拉伸粘结强度,收缩率降低10%以上,并改善抗碳化能力,使砂浆体积更稳定;脱硫石膏对粉煤灰及矿渣粉起到激发硫酸盐和碱性的双重作用,并在一定程度上促进水泥水化;胶凝材料的水化产物改善砂浆浆体内部结构,使砂浆浆体中的孔隙大大减少。  相似文献   

10.
This paper explains the effect of water curing condition on compressive strengths of fly ash–cement paste by quantitative data of hydration degree. Hydration of fly ash–cement paste was estimated by Rietveld analysis and selective dissolution. The result shows that the hydration degree of belite is affected by water curing conditions, more so than that of fly ash and alite. Fly ash still continues to hydrate even without an extra, external supply of water. The strong dependence of fly ash–cement concrete on curing conditions does not come from the hydration degree of fly ash, but rather comes from the hydration degree of cement, especially belite. When the water to binder ratio is low enough, the hydration of cement plus small hydration of fly ash are considered to be enough for adequate compressive strength at the beginning. Then, compressive strength of fly ash–cement paste becomes less sensitive to the water curing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号