首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of copper selenide were deposited onto amorphous glass substrates at various substrate temperatures by computerized spray pyrolysis technique. The as deposited copper selenide thin films were used to study a wide range of characteristics including structural, surface morphological, optical and electrical, Hall Effect and thermo-electrical properties. X-ray diffraction study reveals that the films are polycrystalline in nature with hexagonal (mineral klockmannite) crystal structure irrespective of the substrate temperature. The crystalline size is found to be in the range of 23–28 nm. The SEM study reveals that the grains are uniform with uneven spherically shaped and spread over the entire surface of the substrates. EDAX analysis confirmed the nearly stoichiometric deposition of the film at 350 °C. The direct band gap values are found to be in the range 2.29–2.36 eV depending on the substrate temperature. The Hall Effect study reveals that the films exhibit p-type conductivity. The values of carrier concentration and mobility for the film are found to be 5.02 × 1017 cm?3 and 5.19 × 10?3 cm2 V?1 s?1; respectively for film deposited at 350 °C.  相似文献   

2.
PbS and PbSe were prepared by hot injection method. The powders were used for preparing the corresponding films by using thermal evaporation technique. The structural, optical and electrical properties of PbS and PbSe thin films were investigated. The structural properties of PbS and PbSe were investigated by X-ray diffraction, transmission electron microscopy and energy dispersive X-ray techniques (EDX). PbS and PbSe films were found to have cubic rock salt structure. The particles size ranged from 1.32 to 2.26 nm for PbS and 1.28–2.48 nm for PbSe. EDX results showed that PbS films have rich sulphur content, while PbSe films have rich lead content. The optical constants (absorption coefficient and the refractive index) of the films were determined in the wavelength range 200–2500 nm. The optical energy band gap of PbS and PbSe films was determined as 3.25 and 2.20 eV, respectively. The refractive index, the optical dielectric constant and the ratio of charge carriers concentration to its effective mass were determined. The electrical resistivity, charge carriers concentration and carriers mobility of PbS at room temperature were determined as 0.55 Ω cm, 1.7 × 1016 cm?3 and 656 cm2 V?1 s?1, respectively, and for PbSe films they were determined as 0.4 Ω cm, 9 × 1015 cm?3 and 1735 cm2 V?1 s?1, respectively. These electrical parameters were investigated as a function of temperature.  相似文献   

3.
Transparent conducting ZnO:F was deposited as thin films on soda lime glass substrates by atmospheric pressure chemical vapor deposition (CVD) deposition at substrate temperatures of 480–500 °C. The precursors diethylzinc, tetramethylethylenediamine and benzoyl fluoride were dissolved in xylene. The solution was nebulized ultrasonically and then flash vaporized by a carrier gas of nitrogen preheated to 150 °C. Ethanol was vaporized separately, and these vapors were then mixed to form a homogeneous vapor mixture. Good reproducibility was achieved using this new CVD method. Uniform thicknesses were obtained by moving the heated glass substrates through the deposition zone. The best electrical and optical properties were obtained when the precursor solution was aged for more than a week before use. The films were polycrystalline and highly oriented with the c-axis perpendicular to the substrate. The electrical resistivity of the films was as low as 5 × 10−4 Ωcm. The mobility was about 45 cm2/Vs. The electron concentration was up to 3 × 1020/cm3. The optical absorption of the films was about 3–4% at a sheet resistance of 7 Ω/square. The diffuse transmittance was about 10% at a thickness of 650 nm. Amorphous silicon solar cells were deposited using the textured ZnO:F films as the front electrode. The short circuit current was increased over similar cells made with fluorine doped tin oxide, but the voltages and fill factors were reduced. The voltage was restored by overcoating the ZnO:F with a thin layer of SnO2:F.  相似文献   

4.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

5.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

6.
Transparent conductive Al-doped ZnO (AZO) thin films were deposited on various substrates including glass, polyimide film (PI) and stainless steel, using radio frequency magnetron sputtering method. The structural, electrical and optical properties of AZO thin films grown on various substrates were systematically investigated. We observe that substrate materials play important roles in film crystallization and resistivity but little on optical transmittance. X-ray diffractometer study shows that all obtained AZO thin films have wurtzite phase with highly c-axis preferred orientation, and films on glass present the strongest (002) diffraction peaks. The presence of compression stress plays critical role in determining the crystalline structure of AZO films, which tends to stretch the lattice constant c and enlarge the (002) diffraction angle. Although the films on the glass present the finest electrical properties and the resistivity reaches 12.52 × 10-4 Ωm, AFM study manifests that films on flexible substrates, especially stainless steel, bestrew similar inverted pyramid structure which are suitable for window material and electrode of solar cells. The average optical transmittance of AZO thin films deposited on glass and PI are both around 85% in the visible light range (400–800 nm).  相似文献   

7.
Semiconducting Ag2SeTe thin films were prepared with different thicknesses onto glass substrates at room temperature using thermal evaporation technique. The structural properties were determined as a function of thickness by XRD exhibiting no preferential orientation along any plane, however the films are found to have peaks corresponding to mixed phase. The XRD studies were used to calculate the crystallite size and microstrain of the Ag2SeTe films. The calculated microstructure parameters reveal that the crystallite size increases and micro strain decreases with increasing film thickness. The refractive index, dielectric constants and thereby the optical bandgap of the films were calculated from transmittance spectral data recorded in the range 400?C1200 nm by UV?CVIS-Spectrometer. The direct optical bandgap of the Ag2SeTe thin films deposited on glass substrates with different thicknesses 50?C230 nm were found to be in the range 1.48?C1.59 eV. The carrier density value is estimated to be around 9.8 × 1021 cm?1 for the film thickness of 150 nm. The compositions estimated from the optical band gap studies reveal a value of 0.75 for Tellurium concentration. These structural and optical parameters are found to be very sensitive to the thin film thickness.  相似文献   

8.
Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photoelectrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ~1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm?1, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.  相似文献   

9.
In this study, Cu2ZnSn(S,Se)4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height \(({\bar {\Phi }_{B0}})\) and standard deviation \(({\sigma _0})\) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm?2 K?2 via modified Richardson plot and the density of interface states (Dit) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (CHF ? CLF) and Hill–Coleman methods.  相似文献   

10.
Z.S. Khalifa  H. Lin 《Thin solid films》2010,518(19):5457-1796
Titanium dioxide thin films were deposited by Metallorganic Chemical Vapor Deposition at substrate temperatures ranging from 250 °C to 450 °C over soda lime glass and indium tin oxide coated glass substrates. X-ray diffraction studies show that films have a crystalline anatase structure at all the deposition temperatures. Particle size decreases and texture changes with the increase in substrate temperature. X-ray photoelectron spectroscopy confirms the appearance of a new well resolved state in the core level of Ti 2p spectrum shifted by 1.16 eV to lower binding energy due to the reduction of Ti+ 4 to Ti+ 3 upon litheation. Chronoamperometery, cyclic voltammetery and in situ UV-Vis spectrophotometeric studies were carried out on the prepared samples. Particle size and crystallinity control the electrochromic performance. The 350 °C film shows the highest ion storage capacity and the highest optical modulation along with an appreciable band gap broadening.  相似文献   

11.
In this work tin doped indium oxide (ITO) thin films were deposited onto soda lime glass substrates by the direct current magnetron sputtering system analyzing process of deposition with optical emission spectroscopy (OES). The dependence of electro-optical characteristics of the deposited films on the sputtering pressure, O2/Ar working gas flow ratio and the discharge power was investigated. Transparency of the ITO films was measured using the ultraviolet and visible light spectrometer (UV–vis). The X-Ray photoelectron spectroscopy (XPS) method was applied for analysis of thin films surface chemical composition. It was found that in-situ measurement of plasma emission spectra allowed prediction and control of parameters of ITO thin films, namely resistivity and transparency. The correlation between the thin films resistivity, optical transparency and kinetics of deposition was examined.  相似文献   

12.
In this work, low content indium doped zinc oxide (IZO) thin films were deposited on glass substrates by RF magnetron sputtering using IZO ceramic targets with the In2O3 doping content of 2, 6, and 10 wt%, respectively. The influences of In2O3 doping content and substrate temperature on the structure and morphology, electrical and optical properties, and environmental stability of IZO thin films were investigated. It was found that the 6 wt% doped IZO thin film deposited at 150?°C exhibited the best crystal quality and the lowest resistivity of 9.87?×?10?4 Ω cm. The corresponding Hall mobility and carrier densities were 9.20 cm2 V?1 s?1 and 6.90?×?1020 cm?3, respectively. Compared with 2 wt% Al2O3 doped ZnO and 5 wt% Ga2O3 doped ZnO thin films, IZO thin film with the In2O3 doping content of 6 wt% featured the lowest surface roughness of 1.3 nm. It also showed the smallest degradation with the sheet resistance increased only about 4.4% at a temperature of 121?°C, a relative humidity of 97% for 30 h. IZO thin film with 6 wt% In2O3 doping also showed the smallest deterioration with the sheet resistance increased only about 2.8 times after heating at 500?°C for 30 min in air. The results suggested that low indium content doped ZnO thin films might meet practical requirement in environmental stability needed optoelectronic devices.  相似文献   

13.
Copper indium diselenide (CuInSe2) compound was synthesized by reacting its elemental components, i.e., copper, indium, and selenium, in stoichiometric proportions (i.e., 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Structural and compositional characterization of synthesized pulverized material confirms the polycrystalline nature of tetragonal phase and stoichiometry. CuInSe2 thin films were deposited on soda lime glass substrates kept at different temperatures (300–573 K) using flash evaporation technique. The effect of substrate temperature on structural, morphological, optical, and electrical properties of CuInSe2 thin films were investigated using X-ray diffraction analysis (XRD), atomic force microscopy (AFM), optical measurements (transmission and reflection), and Hall effect characterization techniques. XRD analysis revealed that CuInSe2 thin films deposited above 473 K exhibit (112) preferred orientation of grains. Transmission and reflectance measurements analysis suggests that CuInSe2 thin films deposited at different substrate temperatures have high absorption coefficient (~104 cm−1) and optical energy band gap in the range 0.93–1.02 eV. Results of electrical characterization showed that CuInSe2 thin films deposited at different substrate temperatures have p-type conductivity and hole mobility value in the range 19–136 cm2/Vs. Variation of energy band gap and resistivity of CuInSe2 thin films deposited at 523 K with thickness was also studied. The temperature dependence of electrical conductivity measurements showed that CuInSe2 film deposited at 523 K has an activation energy of ~30 meV.  相似文献   

14.
Ag-doped tin-sulfide thin films were deposited with in spray pyrolysis method at T = 425 °C on soda lime glass substrates. The effects of Ag doping were investigated on the structural, optical, and electrical properties of thin films. Double deionized water was used as a precursor solution in which tin chloride (SnCl45H2O) and thiourea (CS(NH3)2) in addition to silver acetate (AgC2H3O2) were dissolved. All in all resulted to preparation of SnS2:Ag thin films with \(\frac{{\left[ {\text{Ag}} \right]}}{{\left[ {\text{Sn}} \right]}}\% = 0, \,1, \,2, \,3\, {\text{and}} \,4\,{\text{at}}.\%\). The (001) plane is the preferred orientation of the SnS2 phase which is analyzed by X-ray diffraction (XRD). The intensity of mentioned peak has an increasing trend, generally, with increasing Ag doping concentration. Thin films have spherical grains as is shown in SEM images. Increasing doping concentration from 1 to 4%, causes decrease in: single-crystal grains from 14.68 to 6.31 nm, optical band gap from 2.75 to 2.62 eV, carrier concentration from 3.11 × 1017 to 2.58 × 1017 cm?3, and Hall mobility from 1.81 to 0.13 cm2/v s, as well as increase in: average grain size, generally, from 70 to 79 nm and electrical resistance from 11.11 to 181.26 Ω cm, respectively. The majority carriers are electrons for these films as is concluded from Hall Effect measurements.  相似文献   

15.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

16.
In this paper, experimental data on the electrical properties of as deposited and annealed nanocrystalline SnSe and ZnSe thin films are reported. The thin films of SnSe and ZnSe are deposited on glass substrate by chemical bath deposition method. The films are studied before and after thermal annealing at temperatures 473 K for 1 h. This annealing is done in vacuum of 2?×?10?3 mbar. The various electrical parameters like dark conductivity, photoconductivity, activation energy, photosensitivity and carrier life time have been measured on these films before and after annealing.  相似文献   

17.
A series of aluminum doped zinc oxide thin films with different thickness (25–150 nm) were deposited on indium tin oxide coated polyethylene terephthalate substrates by radio frequency magnetron sputtering method at room temperature. The structural, optical and electrical properties of the films were investigated by X-ray Diffractometer, UV–Vis spectrometer and Hall Effect Measurement System. All the obtained films were polycrystalline with a hexagonal structure and a preferred orientation along [002] direction with the c-axis perpendicular to the substrate surface. The optical energy band gap (Eg) values of the films were found to be in the range from 3.36 to 3.26 eV, and their average optical transmissions were about 75 % in the visible region. The films had excellent electrical properties with the resistivities in the range from 2.78 × 10?5 to 2.03 × 10?4 Ω cm, carrier densities more than 3.35 × 1021 cm?3 and Hall mobilities between 5.77 and 11.13 cm2/V s.  相似文献   

18.
Titanium dioxide (TiO2) thin films have been deposited with various substrate temperatures by dc reactive magnetron sputtering method onto glass substrate. The effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. Chemical composition of the films was investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) analysis of the films revealed that they have polycrystalline tetragonal structure with strong (101) texture. The surface morphological study revealed the crystalline nature of the films at higher substrate temperatures. The TiO2 films show the main bands in the range 400–700 cm?1, which are attributed to Ti–O stretching and Ti–O–Ti bridging. The transmittance spectra of the TiO2 thin film measured with various substrate temperatures ranged from 75 to 90 % in the visible light region. The optical band gap values of the films are increasing from 3.44 to 4.0 eV at growth temperature from 100 to 400 °C. The structural and optical properties of the films improved with the increase in the deposition temperature.  相似文献   

19.
In the present study, cadmium sulfide (CdS) thin films were deposited on different substrates [soda glass, fluoride doped tin oxide, and tin doped indium oxide (ITO) coated glass] by a hot plate method. To control the thickness and the reproducibility of the sample production, the thin films were coated at different temperatures and deposition times. The CdS thin films were heated at 400 °C in air and forming gas (FG) atmosphere to investigate the effect of the annealing temperatures. The thickness of the samples, measured by ellipsometry, could be controlled by the deposition time and temperature of the hot plate. The phase formation and structural properties of CdS thin films were studied by X-ray diffraction and scanning electron microscopy, whereas the optical properties were obtained by UV–vis spectroscopy. A hexagonal crystal structure was observed for CdS thin films and the crystallinity improved upon annealing. The structural and optical properties of CdS thin films were also enhanced by annealing at 400 °C in FG atmosphere (95 % N2, 5 % H2). The optical band gap was changed from 2.25 to 2.40 eV at different annealing temperatures and gas atmospheres. A higher electrical conductivity, for the sample annealed at FG, was noticed. The samples deposited on ITO and annealed in FG atmosphere showed the best structural and electrical properties compared to the other samples. CdS thin films can be widely used for application as a buffer layer for copper–indium–gallium–selenide solar cells.  相似文献   

20.
Indium-doped cadmium oxide (CdO:In) films were prepared on glass and sapphire substrates by pulsed filtered cathodic arc deposition (PFCAD). The effects of substrate temperature, oxygen pressure, and an MgO template layer on film properties were systematically studied. The MgO template layers significantly influence the microstructure and the electrical properties of CdO:In films, but show different effects on glass and sapphire substrates. Under optimized conditions on glass substrates, CdO:In films with thickness of about 125 nm showed low resistivity of 5.9 × 10?5 Ωcm, mobility of 112 cm2/Vs, and transmittance over 80 % (including the glass substrate) from 500 to 1500 nm. The optical bandgap of the films was found to be in the range of 2.7 to 3.2 eV using both the Tauc relation and the derivative of transmittance. The observed widening of the optical bandgap with increasing carrier concentration can be described well only by considering bandgap renormalization effects along with the Burstein–Moss shift for a nonparabolic conduction band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号