首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
制备条件对炭泡沫结构的影响   总被引:5,自引:8,他引:5  
曹敏  张书  王永刚 《新型炭材料》2005,20(2):134-138
利用沥青在热解过程中产生挥发性气体自发泡和高压渗氮的原理,以石油中间相沥青为原料,采用高压反应釜制备炭泡沫材料。用SEM和偏光显微镜观察了材料的孔结构,分析了制备条件对炭泡沫结构的影响。结果表明,温度和压力是影响炭泡沫材料结构的重要因素,在实验条件范围内,较高的反应温度和压力有利于制备出较高性能的炭泡沫,其气孔率较高,韧带炭层排布规则。  相似文献   

2.
Anisotropic mesophase pitch of high solubility and low melting temperature was prepared from petroleum pitch by carbonizing under vacuum conditions at 430° C for 5 h. The solubility and melting temperature were 55 wt% in quinoline and 270° C respectively, at complete development of anisotropic mesophase pitch. This solubility is much higher than that of mesophase pitch from the same feedstock using refluxing and gas blowing conditions. Yields of the mesophase pitch of complete anisotropic development were 60 wt% under vacuum. The structure of these mesophase pitches were analysed in terms of preparative procedures which create high solubility of a completly anisotropic material.  相似文献   

3.
考察了大直径中间相沥青纤维熔纺过程中中间相沥青在喷丝板微孔区内的流动特性及剪切速率。随熔纺温度及挤出流量的增加,中国相沥青在喷丝板微孔区内剪切速率相应增加。熔纺时控制了挤出流量和牵伸速率的良好匹配,获得了丝径均匀的大直径中间相沥青炭单丝。两种中间相沥青在剪切速率和由其纺制获得纤维的离散系数方面的差异,归结为常压与加压齐聚反应后中间相沥青在本性上的差异。  相似文献   

4.
中间相沥青制备高密度高强度炭/石墨材料   总被引:2,自引:0,他引:2  
以在不同氧化温度下制备的氧化中间相沥青为原料制备了具有不同密度的炭/石墨材料, 根据对样品物理性能和微观结构的研究得出最佳的工艺条件. 以150MPa压制的坯体经过2200℃石墨化后得到具有高密度(2.02g/cm3)、低孔率(2.03%)、大体积收缩(44.86%)、高的弯曲强度和压缩强度(70.3和123.3MPa)的样品. 该样品具有均匀致密的结构. 实验证明, 氧化中间相沥青是制备高性能炭石墨材料良好的前驱体.  相似文献   

5.
Mixtures of pitch and polyethyleneterephthalate (PET) powders were carbonized in a gold tube under various pressures. Carbon yields, optical textures and the process of formation and growth of mesophase were studied. The carbon yields gradually decreased with an increase in PET content. By carbonization under normal pressure, only 10 to 20 wt % of PET was effective to obtain a homogeneous optical texture of fine mosaic type. Under a pressure of 30 MPa, carbon with a fine mosaic texture was found in a larger range of PET content of 30 to 50 wt% with a high carbon yield. The nucleation of mesophase in the pitch-PET system at 450° C under 5 MPa was more rapid and larger in number than in the pitch alone.  相似文献   

6.
Polygranular carbons were prepared from a coal-tar pitch based mesophase by sintering, using different experimental conditions. The temperature and time of mesophase stabilization, the pressure applied during moulding, and the sintering heating rate were investigated in order to obtain materials with optimum properties. Oxidative stabilization with air between 225 and 250°C causes a significant reduction in the plasticity of the coal-tar pitch based mesophase, allowing moulding and sintering to be performed. An increase in the moulding pressure results in an increase in the bulk density of the green materials. However, sintering must be carried out at low heating rates in order to control the release of gases and thus avoid damage to the sintered material. Higher sintering heating rates are compatible with low moulding pressures and a high degree of stabilization. Whenever the materials do not distort during sintering, a common feature observed is that mechanical and electrical properties improve with increasing moulding pressure, while an increase in sintering heating rate only serves to improve the strength of the materials.  相似文献   

7.
For the carbon foam production, mesophase pitch pellets are heated up in a reactor in an aluminum mold to specified pressures and finally pressure released to obtain green carbon foam samples. The green foams were then stabilized and carbonized. The effects of various temperatures, pressures and pressure release times on production of carbons foams are investigated. The samples are subjected to SEM, mechanical testing, mercury porosimetry analysis and bulk density determination for characterization. For the processing temperatures of 553, 556, 566 and 573 K, the densities of the foams produced were 380, 390, 410 and 560 kg/m3 respectively. The compressive strengths of the respective samples were increased from 1.47, to 3.31 MPa for the lowest and highest temperatures. The processing pressures were 3.8, 5.8, 6.8 and 7.8 MPa. The bulk density and the compressive strength of the carbon foams produced were changed from 500 to 580 kg/m3, and 1.87 to 3.52 MPa for the lowest and highest pressures respectively. Pressure release times of 5 s, 80 s, 160 s and 600 s are used to produce different carbon foam samples. The densities and the comprehensive strengths measured for the highest and lowest pressure release times changed from 560 to 240 kg/m3 and 3.31 to 2.16 MPa respectively. The pore size distribution of all of the products changed between 0.052×10-6m and 120×10-6m. Increase in temperature and pressure increased the bulk density and compressive strength of the carbon foams. The mercury porosimetry results show % porosity increase with increasing temperature and pressure. On the other hand, increase in pressure release time decreased the bulk density, compressive strength of the carbon foam.  相似文献   

8.
以廉价易得的高结晶度天然鳞片石墨(NG)和中间相沥青为原料, 采用中温热模压一次成型再高温炭化、石墨化处理可以制备高密度、高定向、高导热石墨块体材料。XRD、SEM和PLM分析表明该石墨块具有高度择优取向结构, 其内部石墨片垂直热压方向有序堆积排列。原料中鳞片石墨和沥青粘结剂的组成和配比以及制备工艺参数等对所制石墨材料的面向导热性能有显著影响。采用86wt%+32目鳞片石墨和14wt%AR中间相沥青在500℃、10 MPa下热模压成型的炭块经1000℃炭化、2800℃石墨化后样品的热物理综合性能较好, 其体积密度达到1.91 g/m3以上, 室温面向热导率为550 W/(m·K), 3000℃石墨化室温面向热导率高达620 W/(m·K)。  相似文献   

9.
Conventional and high resolution transmission electron microscopy performed in this study provides some detailed microstructural information of a polyacrylonitrile (PAN) fibremesophase pitch matrix carbon-carbon composite which has not been published in open literature. The PAN fibre in this composite possesses a turbostratic structure throughout the fibre. The structure of the mesophase pitch matrix is graphitic and anisotropic. Near-fibre matrix crystallites are aligned roughly parallel to the fibre surface, exhibiting a flow-type morphology. The fibre-matrix interface in this composite is microfissured. Numerous microcracks exist both within the matrix and along partially bonded interfaces. The irregularly shaped interfacial microcracks readily expose the fibre surface topography. Microcracks within the matrix are formed between, and parallel to, the basal planes of the graphitic platelets. Such submicron-sized matrix cracks appear smaller and denser near the fibre-matrix interface.  相似文献   

10.
Carbon foams were derived from coal-tar pitch and applied as packing media in a biological aerated filter (BAF) system for wastewater treatment. The capacity of growing bacteria on carbon foam is 5.6 wt.%. The removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N) in a carbon foam BAF system are 81, 81 and 75%, respectively. Compared with the ceramic particle BAF system, the carbon foam BAF system exhibits a higher and steadier treatment performance for COD, BOD and NH3-N removal. This is because carbon foam exhibits a higher porosity, higher external surface area, rougher coral-like surface and stronger adsorption performance for organic pollutants.  相似文献   

11.
微观结构对中间相沥青基炭/炭复合材料力学性能的影响   总被引:4,自引:0,他引:4  
借助偏光显微镜、扫描电镜、透射电镜以及力学性能测试研究了微观结构对中间相沥青基炭/炭复合材料力学性能的影响. 结果表明: 基体炭在偏光显微镜下呈现出光学各向异性, 在SEM和TEM下呈片层条带状结构. 基体炭与纤维之间的界面不连续, 为“裂纹型”界面. 材料受载破坏时裂纹通过改变扩展路径而延缓其扩展速度, 在纤维-基体界面处以及基体炭层片之间引起滑移, 在断口形貌上体现出断裂台阶适中且与纤维拔出交替进行, 表现出韧性破坏的断裂特征. 材料具有较高的力学性能, 抗弯强度达到257MPa, 断裂韧性达到11.4MPa·m 1/2.  相似文献   

12.
This article deals with the study of carbon composites behavior during their carbonization. Composites were prepared using four granular carbons (graphite, anthracite, green petroleum coke, and foundry coke) and four pitches (a commercial impregnating coal-tar pitch, an air-blown and two thermally treated pitches). The evolution of the optical microstructure, porosity, volume, and weight of carbon composites was monitored at different intermediate carbonization temperatures (350, 500, 700, and finally 1000 °C). The porosity of composites increases with carbonization due to volume changes and weight loss of pitches. Weight loss of carbon composites during their carbonization mainly depends on the pitch characteristics and it was slightly influenced by the presence of granular carbon. On the other hand, carbon composites with the commercial coal-tar pitch and foundry coke, anthracite, or graphite deform in the initial stages of carbonization (<350 °C) probably due to the lower porosity of the green pellets and the high amount of low-molecular weight compounds of the pitch. Carbon composites with green petroleum coke underwent important dimensional changes during their carbonization, expanding initially and then shrinking at temperatures above 700 °C. The type of granular carbon strongly influenced the microstructure of the final carbon composite, as a result of its effect on the development of mesophase. Graphite, anthracite and foundry coke delays mesophase development, whereas green petroleum coke accelerates mesophase formation.  相似文献   

13.
以煤焦油基中间相沥青为原料,在一定的温度和压力条件下升温发泡,然后再经碳化、石墨化便可以制得一种高导热系数的多孔材料——碳泡沫。应用分形理论讨论了这种新型多孔材料的导热特性,推导出了碳泡沫的面积分形维数,并在此基础上建立了石墨化碳泡沫材料的导热模型,采用热阻法导出了石墨化碳泡沫材料的等效导热系数的关系式,计算出了碳泡沫的有效导热系数,计算结果与碳泡沫样品的实测值基本一致,这种方法为更好地利用其优良的导热性能提供了理论基础。  相似文献   

14.
预氧化对中间相沥青泡沫炭结构和性能的影响机制研究   总被引:2,自引:0,他引:2  
研究了预氧化对萘系中间相沥青的表面化学性质、族组成分布以及对泡沫炭的发泡条件、泡孔形成、孔结构及微结构的影响机制.当中间相沥青经210℃预氧化2h后,其喹啉不溶物含量增加32.3%,族组成分布变窄.在600℃/3MPa发泡条件下,所制石墨化泡沫炭的平均孔径、压缩强度分别为200μm、2.8MPa.  相似文献   

15.
工艺条件对硼取代聚芳烃中间相沥青性能的影响   总被引:5,自引:3,他引:2  
以煤焦油沥青和吡啶硼烷为原料采用加压热缩聚工艺制备硼取代聚芳烃中间相沥青,考察了硼添加量,反应温度和反应时间对中国间相沥青的收率、软化点、残炭值、四氢呋喃的的含量以及硼含量的影响。发现在同一热缩聚条件下随硼添加量的增加,中间相沥青的收率降低,但其软化点、残炭值及四氢呋喃不溶物却相应提高,80%~90%的硼被保留在反应产物中,对于相同的硼添加量,反应温度的提高及反应时间的延长对中间相沥青的收率和性能  相似文献   

16.
Al–Si (355.0) alloy foam has been produced by Alporas method (in which foam alloy melts, and titanium hydride is used as a blowing agent). Mechanical behavior such as quasi-static compression (strain–stress curves, energy absorption capacity), also the effects of thermal properties on the macroscopic structure of the produced foam were investigated. In addition, the effect of energy absorption capacity on percentage porosity has also been studied. The research shows that the produced foam with an average cell size and proper distribution has a more mechanical stability compared to the foams with no such characteristics. It was found that yield strength tends to increase from 12.51 MPa for porosity 74.0% to 22.32 MPa for porosity 54.0%. This foam has also been compared with other foams such as Al-pure foam and Mg foam. It can be stated that Al–Si (355.0) foam has a higher yield strength in comparison to Al-pure foam and Mg foam.  相似文献   

17.
以中间相沥青为原料, 采用不同长宽比的矩形截面喷丝板, 通过控制熔融纺丝时的收丝速率, 制得了具有不同截面尺寸和晶体取向的高定向中间相沥青基带状炭纤维, 并研究了热处理温度和喷丝孔截面尺寸对所得炭纤维结构和性能的影响。结果表明, 喷丝孔的形状和收丝速度对炭纤维的晶体取向有显著影响。当收丝速度一定时, 随着喷丝孔截面长宽比的减小, 带状炭纤维截面碳晶体层片由褶皱平行取向结构向辐射状垂直取向结构转变。随着热处理温度的升高, 所制得炭纤维的室温轴向电阻率显著减小, 热导率相应增大, 力学性能明显提高; 随着收丝速率的增大, 带状炭纤维室温轴向电阻率变化不大, 但对其力学性能有显著影响。当喷丝孔截面长宽比和纺丝速度分别为30:1和75 m/min 时, 2500℃石墨化纤维的拉伸强度和杨氏模量分别为2.53 GPa和234.77 GPa。  相似文献   

18.
Four precursors (mesophase pitch, condensed polynuclear aromatic resin, polyimide resin, and thermosetting phenolic resin) were heat treated at temperatures from 900 to 3000 °C. These products were characterized by X-ray diffraction, transmission electron microscopy, and helium adsorption density instruments. Heterogeneous graphitization was observed above 2200 °C in the resin carbons. Various constituents (amorphous, turbostratic, and graphitic) coexisted and transformed from being disordered to ordered with increasing treatment temperature. The molecular structures of the starting materials played important roles in the proportions of various constituents, crystallite sizes, and preferred orientation of the graphitic constituent of the different carbons during high temperature treatment. High-resolution transmission electron microscopy images showed that the structural features of Jenkins' and Shiraishi’s model all existed in three resin carbons. Based on these results, we think that their structures are not belong to Jenkins' model, also do not belong to Shiraishi's model, are a complex of above two models.  相似文献   

19.
Two polygranular graphites were prepared by sintering a coal-tar pitch based mesophase and a naphthalene-based mesophase. The influence of temperature on the structural (density, porosity and light texture), mechanical (flexural strength) and electrical (electrical resistivity) properties of the carbons was studied at different stages of carbonization/graphitization (400–2600°C). The results show that the density of the materials increases continuously with temperature, pores mainly appearing below 800°C, during the low-sintering phase and at the initial stages of the solid-sintering process. Above this temperature, porosity decreases due to the densification of the materials. Densification is clearly evidenced by a reduction in interlayer spacing and an increase in crystallite size. Flexural strength and electrical resistivity follow a different trend depending on the temperature range. Thus, flexural strength reaches its maximum value at 1000°C, while electrical resistivity decreases continuously with temperature. Any variation in these properties is mainly related with porosity and crystallographic order. The different composition of the raw materials causes structural, mechanical and electrical changes to occur to different extent in both materials.  相似文献   

20.
Coal tar-derived mesophase pitch and its blends with PVC pitch in 5 or 10 wt% were spun at temperatures from 340 to 390° C by applying pressurized nitrogen. The parent mesophase pitch and the blended pitch showed an excellent spinnability at temperatures from 360 to 380° C and from 350 to 380° C, respectively, to give a thin pitch fibre of 10m diameter. The transverse texture of the fibres from the parent mesophase pitch showed the radial orientation regardless of a higher spinning temperature of 390° C. In contrast, those from the blended pitches showed random orientation even at the lower spinning temperature of 350° C. The amounts of the blend extruded by spinning at each temperature under 0.2 kg cm–2 G–1 were always larger than those of the mesophase pitch. It is clarified in the present study that blending PVC pitch can realize stable spinning at lower temperatures, where the molecular orientation in the transverse section of the resultant carbon fibre was controlled through decreasing the viscosity of the whole mesophase pitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号