首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural properties of La2O3 and Al2O3-La2O3 binary oxides prepared by sol-gel were studied by XRD, HRTEM and UV-vis. The binary oxides with high lanthana contents show an amorphous structure after calcination at 650 °C. At calcination temperatures higher than 1000 °C there is a phase transformation from the amorphous state to the crystalline LaAlO3 with a perovskite structure. The structure of La2O3 is consistent with the hexagonal system; however, some crystalline microdomains with a monoclinic structure were detected by HRTEM. Islands of La2O3 and LaAl11O18 phases were detected at high lanthana concentration in the binary oxide. The modification in the coordination shell of the Al3+ cations due to the interaction with La3+ cations confirms the formation of phases with a perovskite structure and the presence of islands of the LaAl11O18 phase.  相似文献   

2.
Al2O3/BN composite ceramics with nano-sized BN dispersions ranging from 0 to 30 vol.% were successfully fabricated by hot-pressing α-Al2O3 powders with turbostratic BN (t-BN) coating, which was prepared through chemical processes using boric acid and urea. SEM observations revealed that the nano-sized hexagonal BN (h-BN) particulates were homogeneously dispersed within Al2O3 grains as well as at grain boundaries. Vickers hardness of materials decreased with an increase in BN content. The fracture toughness was improved but the fracture strength had a small decrease, in comparison to Al2O3 monolithic ceramics. The nanocomposite ceramics with BN content more than 20 vol.% exhibited excellent machinability, which could be drilled using conventional hard metal alloy drills. Drilling rates and normal forces demonstrate the ease of machining of these materials. The preliminary information on the relationship between microstructures and properties are provided. The mechanism of material removal is also discussed.  相似文献   

3.
In order to clarify the effect of Al2O3 particle size on the arc erosion behavior of the ceramic-reinforced Al2O3/Cu composite, Al2O3/Cu composites with different sizes of Al2O3 particles were prepared by powder metallurgy, the effect of Al2O3 particle size on the characteristics of arc motion was studied, and the mechanism of arc erosion of Al2O3/Cu composites was discussed as well. The results show that with decrease in the size of Al2O3 particles, the erosion area increases significantly and the erosion pits become shallower. The vacuum breakdown is preferred to appear in the area between Al2O3 particle and the copper matrix. Based on the experimental results and theoretical analysis, a particle partition arc model is proposed.  相似文献   

4.
Nanorod alumina-supported Ni-Zr-Fe/Al2O3 catalysts were prepared by co-impregnation, characterized by TEM, TPR, XRD, XPS, and TPD-pyridine, and tested in auto-thermal reforming of ethanol. The characterization results indicate that, with iron and zirconia promotion, the NixFe1−xAl2O4 mixture spinel forms, the valence of the surface Ni species is modified, and the acidity decreases. As a result, during a 30-h test over the Ni-Zr-Fe/Al2O3 catalyst, sintering is restrained, and the selectivity to hydrogen remains around 85.79% without obvious loss, while the un-promoted Ni/Al2O3 shows poor stability and selectivity.  相似文献   

5.
In the systems Al2O3-AlN, Al2O3-NiO, Al2O3-Li2O and Ga2O3-MgO, non-stoechiometric spinels, when decomposed at high temperatures, form an intermediate metastable phase ε. This phase has a one-dimensional periodic antiphase-domain structure. The antiphase boundaries are parallel to the (310) plane and the displacement vector is 14 [110] when referred to the spinel structure. Across each antiphase boundary, some octahedral and tetrahedral sites share faces instead of corners. In the case of εAlN, cationic vacancies occupy these sites; in the other cases, this is likely to go along with a segregation of the more charged ions.  相似文献   

6.
7.
Cobalt-coated Al2O3 and TiC powders were prepared using an electroless method to improve resistance to thermal shock. The mixture of cobalt-coated Al2O3 and TiC powders (about 70 wt.% Al2O3-Co + 30 wt.% TiC-Co) was hot-pressed into an Al2O3-TiC-Co composite. The thermal shock properties of the composite were evaluated by indentation technique and compared with the traditional Al2O3-TiC composite. The composites containing 3.96 vol.% cobalt exhibited better resistance to crack propagation, cyclic thermal shock and higher critical temperature difference (ΔTc). The calculation of thermal shock resistance parameters (R parameters) shows that the incorporation of cobalt improves the resistance to thermal shock fracture and thermal shock damage. The thermal physic parameters are changed very little but the flexure strength and fracture toughness of the composites are improved greatly by introducing cobalt into Al2O3-TiC (AT) composites. The better thermal shock resistance of the composites should be attributed to the higher flexure strength and fracture toughness.  相似文献   

8.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

9.
The 0-1.5 mol% Er3+-doped Al2O3 films have been prepared on the thermally oxidized SiO2/Si(100) substrate in the dip-coating process by the sol-gel method, using the aluminium isopropoxide [Al(OC3H7)3]-derived γ-AlOOH sols with the addition of erbium nitrate [Er(NO3)3·5H2O]. The continuous Er3+-doped Al2O3 films with the thickness of about 1.2 μm were obtained for nine coating cycles at a sintering temperature of 900 °C. The aggregate size for the Er3+-doped Al2O3 films increased with increasing the Er3+ doping concentration from 0 to 1.5 mol%. The root-mean-square roughness of the films was independent on the Er3+ doping, which was about 1.8 nm for the 0-1.5 mol% Er3+-doped Al2O3 films. The γ-Al2O3 phase with a (110) preferred orientation was produced for the Al2O3 film. The photoluminescence (PL) spectra of 0.1-1.5 mol% Er3+-doped Al2O3 films were observed at the measurement temperature of 10 K. There was no significant change for the PL peak intensity with the increase of Er3+ doping concentration from 0.1 to 1.5 mol%, and similar full width at half maximum of about 40 nm was detected for the 0.1-1.5 mol% Er3+-doped Al2O3 thin films. The Er3+-doped Al2O3 films possess the available PL properties for use in planar optical waveguides.  相似文献   

10.
Pt/CeO2-ZrO2-Bi2O3 catalysts for catalytic combustion of acetaldehyde, which is one of volatile organic compounds (VOCs), were prepared by a wet impregnation method in the presence of polyvinylpyrrolidone K25 (PVP). The addition of PVP in the preparation process was effective to enhance the specific surface area and the Pt2+ ratio on the surface. Additionally, the pore volume and size of the catalysts were modified by the PVP addition. The Pt/CeO2-ZrO2-Bi2O3 catalysts are specific for the total acetaldehyde oxidation and CO and any acetaldehyde-derivative compounds were not observed as by-products. The catalytic activity of the Pt/CeO2-ZrO2-Bi2O3 catalysts was significantly promoted by the PVP addition and the total oxidation temperature decreased. By the optimization of the amount of platinum, the complete oxidation of acetaldehyde was realized at a temperature as low as 140 °C on a 10 wt%Pt/CeO2-ZrO2-Bi2O3 catalyst.  相似文献   

11.
The influence of the molar ratio of Al2O3 to Y2O3 (i.e. MAl2O3/MY2O3) on sintering densification, microstructure and the mechanical properties of a SiC–Al2O3–Y2O3 ceramic composite were studied. It was shown that the optimal value of MAl2O3/MY2O3 was 3/2, not 5/3, which is customarily considered the optimal molar ratio for the formation of YAG (Y3Al5O12) phase. When MAl2O3/MY2O3 is 5/3, materials existed in two phases of YAG and very little YAM phases. The sintering mechanism of the solid phase occurred at 1850 °C. When MAl2O3/MY2O3 was 3/2, materials existed in the two phases YAG (Y3Al5O12) and YAM (Y4Al2O9). The formation of the low melting point eutectic liquid phase (YAG + YAM) increased sintering densification. Flexure strength, hardness and relative density were all higher.  相似文献   

12.
The lamellar Fe/Al2O3 catalysts were prepared by sol-gel method, and then with these prepared catalysts, carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition (CCVD) method using C2H2 as precursor. The as-prepared CNTs and Fe/Al2O3 catalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectrum. The results proved that the as-prepared CNTs actually existed in bundles. And the growth of CNTs bundles should be attributed to the lamellar catalysts, which supported the bottom growth mechanism of CNTs. The transition metal of Mo was not introduced in catalysts to produce CNTs bundles, which was different with others’ results.  相似文献   

13.
In this paper we report on the synthetic investigation of single-crystalline aluminum borate (Al4B2O9) nanowires in large scale by a direct calcination of a precursor powder made of Na2B4O7·10H2O and Al (NO3)3·9H2O at a low temperature of 850 °C. The nanowires, with the diameter of 20-40 nm and the length up to several micrometers, possess smooth surfaces and uniform sizes along the entire wire. The growth mechanism of the nanowires is attributed to a solid-liquid-solid process, which controls the nanowire morphology.  相似文献   

14.
Well-dispersed multi-walled carbon nanotubes (CNTs) reinforced Al2O3 nanocomposites were successfully fabricated by hot-pressing. The resulting promising improvements in fracture toughness, by 94% and 65% with 2 and 5 wt.% CNTs addition respectively, compared with monolithic Al2O3, were attributed to the good dispersion of CNTs within the matrix, crack-bridging by CNTs and strong interfacial connections between the CNTs and the matrix. The interfacial phase characteristics between CNTs and Al2O3 were investigated via combined techniques. It is believed that a possible aluminium oxy-carbide as the primary interfacial phase was produced via a localized carbothermal reduction process. This interface phase presumably has good chemical compatibility and strong connections with both CNTs and the matrix and led nanocomposites to higher fracture toughness.  相似文献   

15.
A thin-film structure comprising Al2O3/Al-rich Al2O3/SiO2 was fabricated on Si substrate. We used radio-frequency magnetron co-sputtering with Al metal plates set on an Al2O3 target to fabricate the Al-rich Al2O3 thin film, which is used as a charge storage layer for nonvolatile Al2O3 memory. We investigated the charge trapping characteristics of the film. When the applied voltage between the gate and the substrate is increased, the hysteresis window of capacitance-voltage (C-V) characteristics becomes larger, which is caused by the charge trapping in the film. For a fabricated Al-O capacitor structure, we clarified experimentally that the maximum capacitance in the C-V hysteresis agrees well with the series capacitance of insulators and that the minimum capacitance agrees well with the series capacitance of the semiconductor depletion layer and stacked insulator. When the Al content in the Al-rich Al2O3 is increased, a large charge trap density is obtained. When the Al content in the Al-O is changed from 40 to 58%, the charge trap density increases from 0 to 18 × 1018 cm− 3, which is 2.6 times larger than that of the trap memory using SiN as the charge storage layer. The device structure would be promising for low-cost nonvolatile memory.  相似文献   

16.
Y.B. Zhou  H.J. Zhang 《Vacuum》2012,86(9):1353-1357
An Al2O3-modified aluminide coating was produced by aluminizing an as-electrodeposited Ni-Al2O3 nanocomposite film using pack cementation method at 1100  C for 4 h. For comparison, aluminizing was also performed in the same condition on an as-deposited Ni film without Al2O3 nanoparticles. SEM/EDAX and TEM results indicated that the co-deposited Al2O3 nanoparticles were homogeneously dispersed in the finer-grain nanocrystalline Ni grains. The isothermal and cyclic oxidation in air at 900 °C indicated that the Al2O3-modified aluminide coatings were profoundly oxidation resistant as compared to the Al2O3-free aluminide coatings due to the faster formation of a continuous adherent α-Al2O3 scale. The effect of Al2O3 on the microstructure and the oxidation of the aluminide coating are discussed in the detail.  相似文献   

17.
This paper presents a novel technique to create Al2O3 hollow spherical nanoparticles. It used Al(OH)3 which was synthesized with Al2(SO4)3 and NaOH, and the C-Al(OH)3 core-shell nanoparticle as intermediate phases. The Al2O3 hollow spheres were achieved by the calcination of the carbon cores and the dehydration of Al(OH)3. The chemical composition, morphology, size and superficial crystal structure of the nanoparticles were characterized with TEM, XRD, TGA, FTIR and BET. The result shows that the average diameter of the C-Al(OH)3 core-shell nanoparticles is about 25 nm, the thickness of the Al2O3 shell is about 5 nm and the surface area is 215.2 m2/g. The procedure for the formation of Al2O3 hollow nanoparticles is discussed in details.  相似文献   

18.
An investigation on the structure of an ultrasonically cast nanocomposite of Al with 2 wt.% nano-sized Al2O3 (average size ∼10 nm) dispersoids showed that the nanocomposite was consisting of nearly continuous nano-alumina dispersed zones (NDZs) in the vicinity of the grain boundaries encapsulating Al2O3 depleted zones (ADZs). The mechanical properties were investigated by nanoindentation and tensile tests. The nano-sized dispersoids caused a marginal increase in the elastic modulus, and a significant increase in the hardness (∼92%), and tensile strength (∼48%). Subsequent cold rolling to achieve a reduction ratio of 2 resulted in an appreciable increase in the hardness due to change in morphology of the microstructure. Estimation of the strength on the basis of inter-particle spacing, which was measured by transmission electron microscopy, could not be accounted for on the basis of Orowan mechanism, and therefore, strengthening mechanisms like local climb and/or cross slip might have a role in this room temperature (0.32TM) deformation process.  相似文献   

19.
Joints of Al2O3/Al/Al2O3 are formed by liquid-state bonding of alumina substrates covered with thin titanium film of 800 nm thickness using an Al interlayer of 30 or 300 μm at 973 K under a vacuum of 0.2 mPa for 5 min and an applied pressure of 0.01 MPa. The bond strength of the joints is examined by a four-point bend testing at room temperature coupled with optical, scanning and transmission electron microscopy. Results show that: (i) bonding occurs due to the formation of a reactive interface on the metal side of the joint with the presence of Al3Ti precipitates (ii) a decrease in Al layer thickness leads to stronger Al2O3/Al/Al2O3 bonds accompanied by a change of both the distribution of reaction products (Al3Ti) in the region of the interface and the failure surface characteristics.  相似文献   

20.
A special slit doser is used to form near unit steps in the spatial profile of an Al2O3 ALD film thickness. The unit step is formed as the Al2O3 ALD occurs mainly downstream from the slit doser because the trimethylaluminum and H2O reactants are entrained in a viscous flow carrier gas. Spectroscopic ellipsometry measurements yielded thickness profiles of Al2O3 ALD on samples placed at different locations relative to the exit of the slit doser and the ALD growth zone. The effects of carrier gas flow rate, reactor pressure, and reactant dose and purge times on the Al2O3 ALD film profile provided details about the gas dynamics around the slit doser. Experimental indications of gas turbulence were observed at the exit of the slit doser. Lateral gradients in the Al2O3 ALD film thickness were also formed by linear translation of the sample relative to the slit doser during ALD. Lateral gradients of various desired pitches ranging from 119 Å/in to 444 Å/in were achieved as a result of accurate control of the Al2O3 ALD film thickness and small sample translation steps relative to the slit doser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号