首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为了探讨聚乙二醇(PEG)对纤维素纳米晶体(CNCs)/聚羟基丁酸戊酸酯(PHBV)复合材料性能的影响规律,采用熔融共混法制备了PEG-CNCs/PHBV复合材料。采用环境扫描电镜(ESEM)、DSC、偏光显微镜(POM)、TG、力学试验机表征了复合材料的界面形貌、结晶性能、力学性能。结果表明,PEG的加入使CNCs/PHBV复合材料的断面由光滑变得粗糙,断口凹凸不平;PEG-CNCs/PHBV复合材料球晶尺寸减小,球晶结构产生缺陷,熔融过程转变成两个熔融峰,熔融温度T_m从167.8℃下降到165.1℃,此外,PEG的加入增加了复合材料分子链的移动性,结晶变得困难,结晶度X_c从54.3%下降到50.2%,熔融结晶温度T_(mc)从99.8℃下降到73.5℃;PEG的加入提高了CNCs/PHBV复合材料的冲击强度和拉伸断裂伸长率,25wt%PEG添加量时,较纯PHBV最大增幅分别为56.4%和96.3%,但杨氏弹性模量和拉伸强度不断下降;PEG的加入使复合材料热解过程由一步热解转化成两步,25wt%PEG添加量时,第一步热解中的最快分解温度(T_(max1))从281.5℃上升到285.3℃;第二步热解中的最快分解温度(T_(max2))从371.5℃上升到394.3℃。因此,PEG的加入可以改善CNCs与PHBV界面相容性和结晶性能,从而提高CNCs/PHBV复合材料韧性、塑性和热稳定性。  相似文献   

2.
在含硅芳炔中添加乙酰丙酮镍二水合物(Ni(acac)_2·2H_2O)和炔基化合物N,N,N’,N’-四炔丙基-4,4’-二氨基-二苯甲烷(B4)制备了两种高热稳定性PSA树脂体系,考察添加物用量对体系凝胶时间、固化温度和热稳定性的影响。结果显示:当添加0.2wt%的Ni(acac)_2·2H_2O时,凝胶时间21.2min;峰值固化温度214℃;质量损失5%的热分解温度(T_(d5))为651.1℃;再向其中添加3wt%B4后,凝胶时间缩短到8.5min;峰值固化温度提高到221℃;树脂固化物的热稳定性显著提高。  相似文献   

3.
以吡啶为溶剂、4-二甲氨基吡啶(DMAP)为催化剂,采用桐酸酰氯(EACl)对杨木纤维(PWF)表面接枝改性。研究了反应物料配比、反应温度、反应时间及催化剂用量对杨木纤维改性反应的影响,并通过接触角测量、元素分析、红外光谱(FT-IR)及扫描电子显微镜(SEM)表征了改性杨木纤维的结构与性能。实验结果表明:以EACl与PWF活性羟基摩尔比4∶1,催化剂DMAP用量为杨木纤维质量的1%,反应温度80℃,反应时间6 h制备的桐酸接枝改性杨木纤维的质量增加率(W)为130%;改性后杨木纤维的疏水性增强。  相似文献   

4.
以4,4′-二氨基二苯醚(ODA)、4,4′-二苯甲烷二异氰酸酯(MDI)、3,3′,4,4′-联苯四甲酸二酐(BPDA)为原料,首先合成端氨基聚酰胺酸和端异氰酸酯基聚脲,然后将2个均聚物偶联,制备3种聚脲链段含量不同的聚脲-聚酰亚胺嵌段共聚物。通过红外分析、X射线衍射、热重分析、差示扫描量热分析和热膨胀系数测试对嵌段共聚物的结构和性能进行了表征。结果表明,聚脲-聚酰亚胺嵌段共聚物具有较好的热稳定性,失重5%的温度T_(5%)在330℃以上;热失重曲线出现2个失重台阶;聚脲链段含量的增加,使玻璃化转变温度升高,热膨胀系数降低;聚脲-聚酰亚胺嵌段共聚物在酸性介质中比在碱性介质中更稳定。  相似文献   

5.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

6.
将氧化石墨烯(GO)通过超声破碎的方法分散在丙二醇甲醚醋酸酯(PMA)中,采用逐步原位聚合的方法将GO参与聚氨酯(PU)的合成反应。将GO片层状态接枝到PU链段当中,制得PU/GO复合材料,并对复合材料的结构进行了表征。实验结果表明:GO与PU进行交联反应并且在基体内分散均匀,在GO添加量为7份条件下,制得的PU/GO复合材料的断裂伸长率达到49.0%,拉伸强度达到28.0MPa,储能模量达到5.08MPa(在130℃条件下),交联密度达到5.05×10~(-4) mol/cm~3,300℃时失重率达到60%,48h吸水率仅为0.3%,具有较好的力学性能、热稳定性能和耐水性能。  相似文献   

7.
以1,4-双(4-氨基-2-三氟甲基苯氧基)苯(6FAPB)和3,3',4,4'-二苯醚四酸二酐(ODPA)为合成聚酰亚胺(PI)的单体,首先采用原位氨基化方法使氧化石墨烯(GO)与6FAPB反应转变为原位氨基化GO,再与ODPA和剩余的6FAPB发生聚合反应得到原位氨基化GO/聚酰胺酸(PAA)溶液。涂膜后,经热酰亚胺化制备出GO质量分数分别为0.05wt%、0.1wt%、0.3wt%、0.5wt%和1.0wt%的原位氨基化GO/PI复合材料膜。利用FTIR、XPS、XRD、UV-vis、TGA、TMA、SEM、拉伸性能测试及接触角测试对原位氨基化GO/PI复合材料的结构和性能进行表征。结果表明,原位氨基化使GO以化学键与PI大分子链连接,有利于GO在复合材料基体中的稳定和均匀分散。XRD结果表明,所得到的原位氨基化GO/PI复合材料膜均为无定型结构。随GO质量分数增加,原位氨基化GO/PI复合材料薄膜的光学透明性急剧降低,但力学性能和热稳定性有一定提高。当GO的质量分数为1.0wt%时,原位氨基化GO/PI复合材料的拉伸强度由64 MPa增加到83 MPa,杨氏模量由1.67 GPa提高到2.10 GPa,10%热失重温度由593℃增加到597℃,玻璃化转变温度变化不大。由于热酰亚胺化后GO表面的大部分含氧官能团消失,原位氨基化GO/PI复合材料膜的吸水率由0.86%降低至0.58%,水接触角由72.5°增加到77.8°。  相似文献   

8.
利用负载戊二酸锌(s-ZnGA)催化二氧化碳(CO2)、环氧丙烷(PO)和邻苯二甲酸酐(PA)三元共聚反应,得到一种新型的三元聚合物聚碳酸亚丙酯苯酐(PPCPA)。用核磁共振谱(1H-NMR和13C-NMR)表征了聚合物结构。研究了PPCPA的热性能和力学性能,结果表明,PA的引入可以提高聚碳酸亚丙酯(PPC)的热稳定性能和力学性能,随着PA含量的增加,PPCPA的热分解温度显著升高,其玻璃化温度(Tg)和拉伸强度先增高后降低,主要是由于聚合物中聚醚含量增加所致。  相似文献   

9.
采用两步投料法,将氧化石墨烯(GO)与4,4′-二苯基甲烷二异氰酸酯(MDI)充分反应后、再加入聚醚多元醇和三羟甲基丙烷原位聚合制备聚氨酯(PU)/GO纳米复合材料。用广角x衍射、拉伸仪、热失重分析仪和扫描电子显微镜等研究了GO含量对PU/GO复合材料弹性模量、拉伸强度、断裂伸长率和热稳定性能的影响。研究发现当GO含量为0.2%时,GO在PU基体内分散均匀未出现团聚现象;当GO含量增加时,出现GO团聚体,且随着GO含量增加而增加。GO团聚现象对PU/GO复合材料的力学性能和热稳定性提高具有不利的影响。未出现GO团聚体的PU/0.2%GO复合材料具有最佳力学性能和热稳定性。用连二亚硫酸钠、氢氧化钠水溶液就地还原制备还原PU/GO纳米复合材料(PU/rGO),研究GO还原对复合材料力学性能和热稳定性的影响。结果发现,GO在PU基体内可以实现一定程度的就地还原,还原后复合材料的力学性能有所下降,但热稳定性能有所提高。  相似文献   

10.
采用氨基稀释剂(AD)和端乙炔基型聚苯并噁嗪(EB)树脂改性一种具有高力学性能的聚(间二乙炔基苯-二甲基硅烷)(PDMP)树脂。按照质量比PDMP∶EB∶AD=5∶1∶1进行共混后制备PDMP-EB-AD树脂。利用FTIR、DSC、介电分析仪(DEA)、TGA分析改性前后树脂的结构、黏度、固化过程和耐热性能变化。结果表明,AD与EB中的—NH2和—C≡CH均参与进PDMP固化过程中,共混后PDMP-EB-AD树脂固化温度升高,黏度降低,热分解温度(Td5)在N2和空气下分别为539.5℃和518.7℃,1 000℃质量保留率分别为85.1%和18.1%。利用浸渍法将PDMP-EB-AD树脂与石英纤维(QF)制备成预浸料进行模压成型,制备的QF增强PDMP-EB-AD树脂(QF/(PDMP-EB-AD))复合材料力学性能极大提高,且树脂与纤维的黏结性得到改善。常温下QF/(PDMP-EB-AD)复合材料弯曲强度和层间剪切强度(ILSS)分别为694.5 MPa和41.9 MPa,较QF/PDMP复合材料分别提高了176.6%和96.7%,250℃时弯曲强度和ILSS达到319.5 MPa和20.11 MPa。   相似文献   

11.
以1-烯丙基-3-甲基氯代咪唑[AMIM]Cl离子液体为介质,用4-二甲基氨基吡啶(DMAP)作催化剂,合成了马来酸酐改性纤维素吸附剂,探索了较优合成条件:催化剂DMAP用量为3%(wt,质量分数),马来酸酐与纤维素质量配合比为5∶1,100℃的条件下反应4h,此时合成物的取代度为0.10。采用FT-IR红外检测、热重分析、扫描电镜和原子吸收分光光度测试对合成物吸附剂进行了表征,并进行了吸附效果实验,结果表明合成物吸附剂对二价金属离子有较好的吸附效果,对Cu~(2+)和Mn~(2+)的最大吸附量能达到168mg/g和149mg/g。  相似文献   

12.
通过多巴胺(DA)和聚乙烯亚胺(PEI)共沉积,在纳米氮化硼(BN)表面引入氨基和羟基等活性基团,增强BN与环氧树脂(EP)基体之间的应力载荷传递。采用热失重分析仪、傅里叶变换红外光谱(FTIR)仪、X射线光电子能谱(XPS)仪及场发射扫描电子显微镜(FSEM)表征了BN纳米片的结构和形貌,研究了其对环氧树脂拉伸强度、断裂韧性以及热稳定性的影响。结果表明,改性BN/DA-PEI纳米片的加入,提高了EP的热稳定性和动态力学性能;与纯EP相比,含有1%(质量分数) BN/DA-PEI的环氧树脂复合材料的拉伸强度、断裂伸长率和临界应力强度因子(K_(IC))值分别提升了43. 3%、30. 8%和129. 7%; EP/BN-DA-PEI复合材料的初始储能模量比纯EP提高了1 063 MPa,玻璃化转变温度(T_g)从167℃升高到178℃。  相似文献   

13.
分别以3,4′-二氨基二苯基醚(3,4′-ODA)和3,3′,4,4′-二苯甲酮四羧酸二酐(BTDA)作为二胺和二酐单体、5-降冰片烯-2,3-二甲酸酐(NA)作为封端剂,通过调节3种原料的化学计量比,在无水甲醇溶剂中合成了具有不同分子量的预聚体,并通过不同温度下的热处理获得了一系列聚酰亚胺(PI)树脂。结果表明:随着预聚体分子量的增加,固化后PI树脂的热稳定性得到提高,5%热失重温度(T5%)由460℃升至513℃,10%热失重温度(T10%)由513℃升至554℃;但是由于交联密度的降低,PI树脂的玻璃化转变温度(Tg)随预聚体分子量的增加从309℃降低至271℃。同时发现,合理的后固化可使PI树脂的耐高温性能得到提高。以该系列PI树脂为基体,采用手糊法制备了一系列碳纤维增强聚酰亚胺(CF/PI)复合材料,它们表现出优良的耐热性能(T5%:532~595℃,T10%:631~840℃,Tg:346~422℃)和机械性能(弯曲强度:559~811MPa,...  相似文献   

14.
夏一菁  赵彬  武峰  王璐 《材料导报》2018,32(Z1):183-187
目前医用凝胶材料普遍存在力学强度较差及生物降解速度过快等问题。以蚕丝丝素蛋白(SF)凝胶为基础材料,加入氧化石墨烯(GO),并将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)及N-羟基琥珀酰亚胺(NHS)作为交联剂制备SF/GO复合凝胶,旨在改善凝胶材料的力学性能,使其在保证复合凝胶材料应有的力学强度的同时,发挥丝素蛋白、氧化石墨烯的生物学效应及凝胶材料的多孔支架作用。实验结果显示,EDC的加入可以使得SF、GO共混形成稳定、均匀的无规卷曲结构,扫描电镜(SEM)显示SF/GO凝胶具有典型的多孔结构。GO的加入可以有效缩短复合材料的凝胶时间,同时复合凝胶材料的力学性能得到明显改善,其压缩强度提高40%以上。GO的加入还可明显延长材料的降解时间。基于SF/GO的复合凝胶在组织修复及再生领域具有较好的应用前景。  相似文献   

15.
利用硅烷偶联剂(APTES)对氧化石墨烯(GO)进行功能化改性, 在不同的试验条件下制备了3种硅烷偶联剂功能化GO(APTES-g-GO)纳米填料, 并经熔融共混制备了APTES-g-GO填充改性的聚苯乙烯(PS)复合材料。为了改善复合材料的界面作用, 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)为增容剂。分别采用FTIR、XRD、TG、SEM以及拉伸和冲击测试对填料和纳米APTES-g-GO/POE-g-MAH/PS复合材料的结构和性能进行了表征和测试。结果表明:APTES已成功接枝于GO的表面上。接枝过程中, APTES对GO有一定的剥离和还原作用。随着填料含量的增加, 纳米APTES-g-GO/POE-g-MAH/PS复合材料拉伸强度和冲击强度均先上升后下降。当填料与基体质量比为0.75%时, 3种复合材料的拉伸强度和冲击强度都达到最大值, 其中纳米AS-GO/POE-g-MAH/PS复合材料的综合性能最好, 其拉伸强度和冲击强度比POE-g-MAH/PS分别提高了19%和 31%。共混过程中, APTES-g-GO与POE-g-MAH之间的反应改善了纳米APTES-g-GO/POE-g-MAH/PS复合材料的界面相互作用。APTES-g-GO均匀分散于复合材料中, 它的加入提高了复合材料的热稳定性能。添加AS-GO填料的复合材料热稳定性能提高最为明显, 含0.75% AS-GO的纳米AS-GO/POE-g-MAH/PS复合材料的最大失重温度比POE-g-MAH/PS提高了7 ℃。   相似文献   

16.
刘跃军  谢伟  刘亦武  刘磅 《功能材料》2012,(16):2176-2180
以己二酸、1,4-丁二醇和尿素为原料,在氩气环境下,通过高温熔融缩聚反应合成了一种新型可降解的己二酸-丁二醇-尿素共聚物,并对反应时间、催化剂种类及其用量、原料配比、反应温度等因素对聚合产物的影响进行了研究。采用红外光谱(FT-IR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、热重分析(TG)、差示量热扫描(DSC)对产物的结构与性能进行了表征。结果表明,当丁二醇和尿素的总量与己二酸(n(丁二醇+尿素)∶n(己二酸))的摩尔比为1.16∶1,丁二醇和尿素(n(1,4-丁二醇)∶n(尿素))的摩尔比为5∶1,最高反应温度为220℃,二月桂酸二丁基锡为催化剂且用量为原料总量的0.03%,总反应时间10h,所得到产物的重均分子量(Mw)可达12700,其颜色、热稳定性和降解性能等较好。  相似文献   

17.
用改良的Hummers法制备出氧化石墨烯(GO),再通过溶液共混,逐步升温固化制备得到GO/呋喃树脂复合材料。利用FTIR、XRD和SEM对GO/呋喃树脂复合材料的微观结构和形貌进行表征,同时对其黏度、玻璃化转变温度、热分解温度、残炭率及硬度进行了检测。结果表明,GO较均匀地分散于呋喃树脂基体中,且两者界面相容性较好。GO/呋喃树脂复合材料的热性能和力学性能相对于纯树脂都有一定的提高。与纯呋喃树脂相比,当GO的添加量为0.3wt%时,GO/呋喃树脂复合材料的玻璃化转变温度提高了36℃,热失重5%时的温度提高了16℃;当GO的添加量为0.1wt%时,GO/呋喃树脂复合材料的残炭率从50.7%提高到53.9%,邵氏硬度从90提高到97。  相似文献   

18.
利用原子转移自由基聚合方法合成了端羧基聚苯乙烯,然后与4-氨基苯乙酮反应,生成末端为乙酰基的聚合物,以P2O5为催化剂,将功能化乙酰基的聚合物与5-乙酰基-2-氨基二苯甲酮共聚,合成出刚柔嵌段共聚物聚苯基喹啉-b-聚苯乙烯(PPQ-b-PS),用IR1、H-NM R对其结构进行了表征,并对PPQ-b-PS嵌段共聚物的热稳定性进行研究,结果表明,PPQ-b-PS在空气中的失重有两个明显的过程,PPQ-b-PS在空气中的起始分解温度为275℃,但在275℃~400℃失重很少,在400℃时,其质量百分比为87.5%,在500℃~600℃迅速失重,到625℃时彻底分解。PPQ-b-PS在氩气中的起始分解温度为325℃,PPQ-b-PS的热稳定性高。  相似文献   

19.
采用溶液法制备了聚己内酯(PCL)/氧化石墨烯(GO)、PCL/石墨烯(GE)及PCL/接枝石墨烯(gGE)复合材料,采用偏光显微镜(POM)、差示扫描量热仪(DSC)、热重分析仪(TGA)研究了复合材料的结晶形态、等温结晶动力学及耐热分解性。POM结果表明,GO、GE及gGE的加入能有效地增加PCL的成核密度,使其球晶生长速率增加。DSC结果表明,GO、GE及gGE作为成核剂能有效地加快PCL的结晶速率,当GO和gGE的质量分数为0.2%时,PCL的结晶速率达到最大值。TGA结果表明,PCL的最大失重速率温度为310℃,GO、GE及gGE的质量分数为0.3%时,复合材料的最大失重速率温度分别为320℃、300℃及280℃,GO的加入使PCL的耐热分解性增强,但GE及gGE的加入使PCL的耐热分解性降低。  相似文献   

20.
采用改进的Hummers法对可膨胀石墨进行加压密闭氧化处理制备了氧化石墨烯(GO),并利用X射线衍射分析、紫外可见吸收光谱和透射电镜对其进行了表征。利用原位乳化法制备了氧化石墨烯/水性聚氨酯(GO/WPU)纳米复合材料。研究了GO含量对GO/WPU纳米复合材料的稳定性、形态、热降解性能和阻燃性能的影响。Zeta电位和扫描电镜的研究表明,GO在GO/WPU纳米复合材料中具有良好的稳定性和分散性。热失重分析结果表明,和纯WPU相比,GO/WPU纳米复合材料的热稳定性略有降低,但800℃时含量2%GO的纳米复合体系的残炭量从0.99%增大到2.90%。锥形量热仪分析结果表明,随着GO在GO/WPU纳米复合材料中的含量增大,材料的阻燃抑烟性能逐渐增强。当GO的含量为2%时,和纯WPU相比,GO/WPU纳米复合材料的峰值热释放速率、总释放热、总烟释放以及烟因子分别降低了34%,19%,27%和43%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号