首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hemp (Cannabis Sativ L.) is an important lignocellulosic raw material for the manufacture of cost-effective environmentally friendly composite materials. From an earlier study it was found that when hemp bast fibers were heated above the glass transition temperature of lignin, there was a migration of lignin to the surface of the fiber. The preliminary observations showed that heat treatment in inert environment seemed to provide enough fiber opening without affecting the associated tissues of the fibers. Here, hemp fibers were given heat treatment in an enclosed vessel in air as well as inert environment and their mechanical properties were compared to the raw hemp fiber. It was found that there were openings of fibers upon heating, both along the length as well as along the diameter or the width directions. For the same weight of the fiber, the total count of fibers increased during heat treatment, with increment up to 32% for inert environment and 39% for air environment; the increment was mainly due to opening up of fibers into lesser diameters than the original fibers. The strength properties were strongly influenced by the diameter of the fibers, with the lesser fibers contributing to greater tensile strength and modulus. The overall tensile strength and modulus of fibers treated in inert environment were found to have increased, probably due to production of fibers of lesser diameters, presumably with less number of natural defects. The overall strength of fiber treated in air environment, however, decreased even though there was opening up of fibers in this case as well. This was due to oxidation of various constituents of fiber which contributes strength.  相似文献   

2.
Trachycarpus fortunei (windmill palm) is one of the most widely distributed and widely used palms in East Asia. In order to find further uses for the palm’s fibers, however, more information on their mechanical and anatomical properties is needed. With this in mind, tensile strength and Young’s modulus of windmill palm fiber bundles were investigated and the structural implications considered. The anatomical features in cross-section, the fracture mode, and the microfibril angle (MFA) of natural fiber bundles were determined. The transverse sectional area occupied by fibers in a fiber bundles (S F) contributes to mechanical strength in practice. It was found that the ratio of S F to the transverse sectional area of a fiber bundle dramatically increases with a decrease in bundle diameter. Therefore, tensile strength and Young’s modulus of an individual fiber bundle in this species increase in parallel with a decrease in fiber bundle diameter. The observed MFA features might have a relationship with the biomechanical movements of fiber bundles in the windmill palm. The potential uses of windmill palm fibers have been discussed.  相似文献   

3.
选取5种国产玄武岩纤维,采用X射线荧光光谱法和纤维单丝拉伸测试等方法,研究200~800℃空气气氛和氮气气氛处理前后纤维的化学成分、物理特性和拉伸性能等变化,以揭示玄武岩纤维的耐高温性能。结果表明:空气气氛下高温处理后由于表面处理剂的去除,玄武岩纤维表面更加光滑,直径略微变小,同时质量减少;SiO_2,Al_2O_3质量分数减小,而FeO+Fe_2O_3,CaO,MgO质量分数都增大,其中FeO+Fe_2O_3的质量分数增加最多,增幅最大达到21%。200℃处理后玄武岩纤维单丝拉伸强度有一定降低,强度保留率最大为98.3%,400℃处理后强度明显下降,强度保留率最高达到64.6%,800℃处理后强度保留率均不足20%。此外,纤维断裂伸长率随温度的升高而减小,弹性模量增大。与空气气氛相比,氮气气氛下纤维强度保留率更高,拉伸性能更稳定。  相似文献   

4.
In this study, we investigated the effect of polymer type, composition, and interface on the structural and mechanical properties of core–sheath type bicomponent nonwoven fibers. These fibers were produced using poly(ethylene terephthalate)/polyethylene (PET/PE), polyamide 6/polyethylene (PA6/PE), polyamide 6/polypropylene (PA6/PP), polypropylene/polyethylene (PP/PE) polymer configurations at varying compositions. The crystallinity, crystalline structure, and thermal behavior of each component in bicomponent fibers were studied and compared with their homocomponent counterparts. We found that the fiber structure of the core component was enhanced in PET/PE, PA6/PE, and PA6/PP whereas that of the sheath component was degraded in all polymer combinations compared to corresponding single component fibers. The degrees of these changes were also shown to be composition dependent. These results were attributed to the mutual interaction between two components and its effect on the thermal and stress histories experienced by polymers during bicomponent fiber spinning. For the interface study, the polymer–polymer compatibility and the interfacial adhesion for the laminates of corresponding polymeric films were determined. It was shown that PP/PE was the most compatible polymer pairing with the highest interfacial adhesion value. On the other hand, PET/PE was found to be the most incompatible polymer pairings followed by PA6/PP and PA6/PE. Accordingly, the tensile strength values of the bicomponent fibers deviated from the theoretically estimated values depending on core–sheath compatibility. Thus, while PP/PE yielded a higher tensile strength value than estimated, other polymer combinations showed lower values in accordance with their degree of incompatibility and interfacial adhesion. These results unveiled the direct relation between interface and tensile response of the bicomponent fiber.  相似文献   

5.
The aim of the present research was to improve the impact strength of epoxy-based glass fiber-reinforced nanocomposites by the addition of polyethylene terephthalate (PET) fibers as reinforcement along with nanoclay. Hybrid nanocomposites containing clay as nano-filler and PET fibers as micro-reinforcement were fabricated. Nanocomposites with 1?phr clay and varying concentrations of PET fibers (1–3?phr) were processed using a vacuum-assisted hand layup. Addition of untreated PET fibers did not improve the impact strength of nanocomposites due to the lack of interaction between the inert PET fibers and other constituents. To improve the interfacial interaction, two different compatibilization procedures for the surface modification of PET fibers were used. In the first procedure, silane treatment of fibers was performed using two separate silane agents. In the second method, maleic anhydride (MAH) grafting was performed in the presence of ultraviolet radiations. Compatibilization of fibers was confirmed with scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR). The results of impact and tensile testing showed an improvement of 19% in the impact strength of nanocomposites at 2?phr silane-treated PET fiber loading without significant loss in tensile strength. Finally, scanning electron micrographs of various nanocomposites were analyzed to correlate with the improved impact strength.  相似文献   

6.
Carbon fibers are widely used as a reinforcement in composite materials because of their high specific strength and modulus. Current trends toward the development of carbon fibers have been driven in two directions; ultrahigh tensile strength fiber with a fairly high strain to failure (~2%), and ultrahigh modulus fiber with high thermal conductivity. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6 GPa), and ultrahigh modulus pitch-based (more than 900 GPa) carbon fibers have been commercially available. In this study, the tensile strengths of PAN- and pitch-based carbon fibers have been investigated using a single filament tensile test at various gauge lengths ranging from 1 to 250 mm. Carbon fibers used in this study were ultrahigh strength PAN-based (T1000GB, IM600), a high strength PAN-based (T300), a high modulus PAN-based (M60JB), an ultrahigh modulus pitch-based (K13D), and a high ductility pitch-based (XN-05) carbon fibers. The statistical distributions of the tensile strength were characterized. It was found that the Weibull modulus and the average tensile strength increased with decreasing gauge length, a linear relation between the Weibull modulus, the average tensile strength and the gauge length was established on log–log scale. The results also clearly show that for PAN- and pitch-based carbon fibers, there is a linear relation between the Weibull modulus and the average tensile strength on log–log scale.  相似文献   

7.
采用低玻璃化转变温度的锡氟磷酸盐玻璃(Pglass)改性聚对苯二甲酸乙二醇酯(PET),制备低黏度高模量的PET基复合材料(PET/Pglass);以PET/Pglass或PET为成纤相,聚丙烯为基体,利用实验室自主设计的多级拉伸挤出装置,制得原位成纤增强聚丙烯复合材料,并研究成纤相形态及其对复合材料力学性能的影响。结果表明,与PET相比,PET/Pglass在多级拉伸挤出过程中原位成纤更容易,纤维长径比更大,分散更均匀,从而进一步提高聚丙烯的拉伸强度和模量,而且能保持聚丙烯较高的断裂伸长率,表明具有低黏高模的PET/Pglass对聚丙烯的原位成纤增强效果更显著。  相似文献   

8.
Bamboo fiber reinforced thermoplastic molding made of steamed wood flour   总被引:1,自引:0,他引:1  
To improve the mechanical property of moldings made of steamed wood flour, layered wood moldings reinforced with steam-exploded bamboo fiber was prepared. Setting the bamboo fiber weight fractions at 25, 50, and 75%, and number of layers at three-, five-, and seven-layered wood moldings were prepared by compression molding. The results of tensile test showed that the tensile strength as well as Young’s modulus increased along with the increase in the bamboo fiber fractions. Where the bamboo fiber content was 75%, the tensile strength became approximately 3.8 to 5.8 times greater, and the tensile Young’s modulus became approximately 2.5 times greater when compared to moldings of 100% wood flour. This fact shows that bamboo fiber is effective to improve the mechanical property of wood moldings. In addition, the tensile strength also increased as the number of layers increased. This result suggested that interfacial shear stress was produced between the layers of bamboo fiber and wood flour.  相似文献   

9.
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.  相似文献   

10.
Electric resistance measurements were used to determine the optimal dispersion conditions for carbon nanotubes (CNTs) in phenolic resins. Plasma treatment is frequently used to modify carbon fiber surfaces to improve adhesion of the fibers to matrices. Such treatment might also influence carbon fiber tensile strength. In order to determine the effect of atmospheric pressure plasma treatment on carbon fiber tensile strength and interfacial bonding strength, change in tensile strength of the fiber was studied at different gage lengths before and after the plasma treatment. The wettability of carbon fibers was improved significantly after only 10 s of plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from 65° to 28°. Surface energies of carbon fiber and CNT–phenolic composites were measured using the Wilhelmy plate technique, indicating that the work of adhesion between plasma treated carbon fibers and CNT–phenolic composites was higher than it before plasma modification. The interfacial shear strength (IFSS) and apparent modulus were also increased by plasma treatment of the carbon fibers.  相似文献   

11.
Theriodopteryx ephemeraeformis commonly known as bag worms produce ultrafine silk fibers that are remarkably different than the common domesticated (Bombyx mori) and wild (Saturniidae) silk fibers. Bag worms are considered as pests and commonly infect trees and shrubs. Although it has been known that the cocoons (bags) produced by bag worms are composed of silk, the structure and properties of the silk fibers in the bag worm cocoons have not been studied. In this research, the composition, morphology, physical structure, thermal stability, and tensile properties of silk fibers produced by bag worms were studied. Bag worm silk fibers have considerably different amino acid contents from those of the common silks. The physical structure of the bag worm silk fibers is also considerably different compared with B. mori and common wild silk fibers. Bag worm’s silk fibers have lower tensile strength (3.2 g/denier) and Young’s modulus (45 g/denier) but similar breaking elongation (15.3%) compared with B. mori silk. However, the tensile strength and Young’s modulus of bag worm fibers are similar to those of the common Saturniidae wild silk fibers. Bag worm silk fibers could be useful for some of the applications currently using the B. mori and wild silk fibers.  相似文献   

12.
The tensile creep behavior of two oxide/oxide ceramic–matrix composites (CMCs) was investigated at 1200 °C in laboratory air, in steam, and in argon. The composites consist of a porous oxide matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, have no interface between the fiber and matrix, and rely on the porous matrix for flaw tolerance. The matrix materials were alumina and aluminosilicate. The tensile stress–strain behavior was investigated and the tensile properties were measured at 1200 °C. Tensile creep behavior of both CMCs was examined for creep stresses in the 80–150 MPa range. Creep run-out defined as 100 h at creep stress was achieved in air and in argon for stress levels ≤100 MPa for both composites. The retained strength and modulus of all specimens that achieved run-out were evaluated. The presence of steam accelerated creep rates and reduced creep life of both CMCs. In the case of the composite with the aluminosilicate matrix, no-load exposure in steam at 1200 °C caused severe degradation of tensile strength. Composite microstructure, as well as damage and failure mechanisms were investigated. Poor creep performance of both composites in steam is attributed to the degradation of the fibers and densification of the matrix. Results indicate that the aluminosilicate matrix is considerably more susceptible to densification and coarsening of the porosity than the alumina matrix. The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.  相似文献   

13.
Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NF’s), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0–20 kGy) were measured. The length and thickness of PP and NF are 80 ± 10 mm and 40–120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.  相似文献   

14.
The fatigue behaviors of two SiC/[SiC+Si3N4] ceramic matrix composites (CMC) were investigated at 1,300°C in laboratory air and in steam. Composites consisted of a crystalline [SiC+Si3N4] matrix reinforced with either Sylramic™ or Sylramic-iBN fibers (treated Sylramic™ fibers that possess an in situ BN coating) woven in a five-harness satin weave fabric and coated with a proprietary boron-containing dual-layer interphase. The tensile stress–strain behaviors were investigated and the tensile properties measured at 1,300°C. Tension–tension fatigue behaviors of both CMCs were studied for fatigue stresses ranging from 100 to 180 MPa. The fatigue limit (based on a run-out condition of 2 × 105 cycles) in both air and steam was 100 MPa for the CMC containing Sylramic™ fibers and 140 MPa for the CMC reinforced with Sylramic-iBN fibers. At higher fatigue stresses, the presence of steam caused noticeable degradation in fatigue performance of both composites. The retained strength and modulus of all run-out specimens were characterized. The materials tested in air retained 100% of their tensile strength, while the materials tested in steam retained only about 90% of their tensile strength.  相似文献   

15.
The effect of holes on the fatigue life of a non-oxide ceramic composite processed via chemical vapor infiltration (CVI) was examined at 1,200 °C in laboratory air and in steam. The effect of holes on tensile strength at 1,200 °C was also evaluated. The composite comprised laminated woven Hi-Nicalon? fibers in an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Unnotched specimens and specimens with a center hole having a radius to width ratio of 0.24 were tested in tension-tension fatigue at 0.1 Hz and at 1.0 Hz. The fatigue stresses ranged from 100 to 140 MPa in air and in steam. Fatigue run-out was defined as 105 cycles at 0.1 Hz and as 2?×?105 cycles at 1.0 Hz. The net-section strength was less than the unnotched ultimate tensile strength. Comparison of notched and unnotched data also revealed that the fatigue performance was notch insensitive in both air and steam environments. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

16.
Elephant grass stalk fibers were extracted using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were incorporated in a polyester matrix and the tensile properties of fiber and composite were determined. The fibers extracted by retting process have a tensile strength of 185 MPa, modulus of 7.4 GPa and an effective density of 817.53 kg/m3. The tensile strength and modulus of chemically extracted elephant grass fibers have increased by 58 and 41%, respectively. After the treatment the tensile strength and modulus of the fiber extracted by retting have decreased by 19, 12% and those of chemically extracted fiber have decreased by 19 and 16%, respectively. The composites were formulated up to a maximum of 31% volume of fiber resulting in a tensile strength of 80.55 MPa and tensile modulus of 1.52 GPa for elephant grass fibers extracted by retting. The tensile strength and the modulus of chemically extracted elephant grass fiber composites have increased by approximately 1.45 times to those of elephant grass fiber composite extracted by retting. The tensile strength of treated fiber composites has decreased and the tensile modulus has shown a mixed trend for the fibers extracted by both the processes. Quantitative results from this study will be useful for further and more accurate design of elephant grass fiber reinforced composite materials.  相似文献   

17.
通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、复丝拉伸法、单丝拉伸法及单丝断裂法对3种国产800-12K碳纤维表面状态及其复丝拉伸性能、单丝复合体系的界面性能进行系统分析与研究。结果表明:3种国产800级碳纤维表面均较为光滑,纤维的粗糙度为9-17nm,纤维表面含氧量较高且稳定,O/C在0.23~0.27之间;3种国产800级碳纤维复丝拉伸强度相当,质量控制稳定,断裂伸长率为1.9左右,纤维与树脂基体匹配性较好;3种国产800级碳纤维单丝拉伸强度不稳定,纤维的表面化学活性对纤维与树脂基体的界面结合强度影响显著。  相似文献   

18.
Blends composed of isotropic and mesophase pitches in various proportions were used as precursors for carbon fibers. The effects of composition on the morphology of blends, precursor spinnability, transversal texture, and mechanical properties of the final carbon fiber were studied. The blends are binary incompatible phase-separation systems. When the content of isotropic pitch is ≤30 %, it is distributed uniformly in the mesophase matrix as spheres; whereas, complete phase inversion occurs when the content is ≥35 %. Blends containing isotropic pitch in dispersion phase show good spinnability and small-diameter fibers can be continuously drawn. The transversal texture of carbon fibers is transformed from a radial type with a crack along the fiber axis to an intermediate morphology between radial and random type by blending 20–30 % isotropic pitch. The tensile strength of carbon fibers with 20–30 % IPc is 2.5 times as high as the AR-based CF without the reduction of Young’s modulus.  相似文献   

19.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

20.
采用氯化钙(CaCl2)乙醇溶液和多巴胺水溶液浸渍法对芳纶纤维表面进行改性处理,对改性后芳纶纤维表面的化学结构、微观形貌、表面粗糙度、单丝拉伸强度和芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析.结果表明,采用CaCl2乙醇溶液处理芳纶纤维后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度明显提高,同时由于纤维结构受到破坏,单丝拉伸强度下降了11.12%;采用多巴胺水溶液处理时,芳纶纤维表面沉积了聚多巴胺涂层,表面粗糙度增大,芳纶纤维/环氧树脂复合材料的层间剪切强度进一步提高,纤维结构几乎不受影响,单丝拉伸强度降幅较小;采用CaCl2乙醇溶液和多巴胺水溶液先后处理芳纶纤维后,纤维表面的聚多巴胺涂层更致密,复合材料的层间剪切强度达到最大值,同时改性后的纤维具有一定的抗紫外性能,此方法改性效果最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号