首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。   相似文献   

2.
目的 赋予纳米纤维素抗菌性,提高其在食品保鲜中的应用价值。方法 以2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化的纤维素纳米纤丝(TOCNF)为原料,利用没食子酸(GA)对TOCNF进行改性,获得改性后的纤维素纳米纤丝(GA-TOCNF),并将其与玉米醇溶蛋白(Zein)共混制备可食性薄膜,探究GA-TOCNF和Zein不同比例对所制薄膜性能的影响。结果 当GA-TOCNF与Zein溶液的体积比为1∶2时,制备的没食子酸改性纳米纤维素/玉米醇溶蛋白复合膜(GA-TOCNF/Zein)的拉伸强度为9.04 MPa,对大肠杆菌和金黄色葡萄球菌的抑菌圈直径分别为11.95 mm和13.1 mm。与不添加GA-TOCNF的薄膜相比,GA-TOCNF/Zein的拉伸强度提高了1.89倍。结论 综合评价圣女果质量损失率、可溶性固形物和感官评价等指标可得,玉米醇溶蛋白基复合膜对圣女果的涂膜保藏效果优于不涂膜对照组的保藏效果。  相似文献   

3.
以6K碳纤维作为主要增强材料,加入相容剂马来酸酐接枝乙烯辛烯共聚物(POE-g-MAH)制备聚酰胺66增强增韧复合材料,对复合材料的摩擦学性能和力学性能进行了表征。通过对比相容剂加入前后材料的摩擦系数、磨损体积以及摩擦界面温度来研究POE-g-MAH的加入对复合材料摩擦学性能的影响;另一方面,POE-g-MAH的加入改善了复合材料的力学性能(对比15%碳纤维情况下):未添加时材料的拉伸强度为47.88MPa,缺口冲击强度为7.47kJ/m2。添加后材料拉伸强度为94.80MPa,其缺口冲击强度可达到9.56kJ/m2。其拉伸强度提高了98%,缺口冲击强度提高了28%。  相似文献   

4.
PVA/ZSM-5分子筛复合膜的制备与性能研究   总被引:1,自引:1,他引:0  
朱雅桐  黄震 《包装工程》2016,37(5):94-98
目的以聚乙烯醇(PVA)为基体材料,添加ZSM-5沸石分子筛和富马酸交联剂制备出一系列的复合膜,研究分子筛含量对复合膜性能的影响。方法用流延法制备复合膜,进行X射线衍射分析和扫描电镜分析,测定复合膜的拉伸性能、耐水溶胀性、透光率与雾度。结果经富马酸交联后PVA薄膜的拉伸强度和耐水溶性得到了明显改善,随着分子筛含量的增多,复合膜的拉伸强度逐渐减小,分子筛的加入对复合膜的溶胀度和透光性都有降低作用。结论从综合测定结果来看,ZSM-5分子筛质量分数为5%时的复合膜具有相对较好的性能。  相似文献   

5.
生物炭复合材料因其良好的性能备受关注,但较差的抗冲击性能限制了其更进一步的应用。文中以短切芳纶、生物炭和线型低密度聚乙烯(LLDPE)为原料采用注塑工艺制备复合材料,探究了短切芳纶对生物炭/LLDPE复合材料性质与性能的影响规律。结果表明,短切芳纶的添加没有改变生物炭/LLDPE复合材料的晶面结构,短切芳纶、生物炭与LLDPE之间具有较好的界面相容性。短切芳纶增大了复合材料的热失重速率峰温,提高了复合材料的热稳定性、耐热性与结晶度。生物炭/LLDPE复合材料具有较佳的力学性能,其弯曲强度、弯曲模量、拉伸强度和拉伸模量分别为14.28 MPa,0.64 GPa,12.02 MPa和0.25 GPa。短切芳纶的添加降低了复合材料的弯曲强度、弯曲模量、拉伸强度、拉伸模量、抗蠕变强度和抗应力松弛能力,但是提高了复合材料的刚度、弹性尤其是韧性,复合材料的抗冲击强度最高可达9.40 kJ/m2。制备的复合材料克服了生物炭复合材料的脆性缺陷,对于进一步拓宽生物炭复合材料的应用范围具有重要意义。  相似文献   

6.
以1.5%异氰酸酯(MDI)界面改性剂改性处理后的竹纤维和聚乳酸为原料,通过注射成型工艺制备竹纤维增强聚乳酸复合材料,探讨竹纤维质量分数对复合材料界面、力学性能、吸水率、热性能的影响。结果表明,随着竹纤维质量分数的增加,复合材料拉伸强度、冲击强度、存储模量以及热稳定性均先增大后减小,24h吸水率逐渐增大,损耗因子逐渐降低。竹纤维质量分数为50%时,复合材料的拉伸强度和冲击强度分别达到最大值63.2/MPa和11.6/kJ/m2,复合材料存储模量最大,热稳定性最好。  相似文献   

7.
李新功  凌启飞  吴义强 《功能材料》2013,(21):3094-3098
以1.5%异氰酸酯(MDI)界面改性剂改性处理后的竹纤维和聚乳酸为原料,通过注射成型工艺制备竹纤维增强聚乳酸复合材料,探讨竹纤维质量分数对复合材料界面、力学性能、吸水率、热性能的影响。结果表明,随着竹纤维质量分数的增加,复合材料拉伸强度、冲击强度、存储模量以及热稳定性均先增大后减小,24h吸水率逐渐增大,损耗因子逐渐降低。竹纤维质量分数为50%时,复合材料的拉伸强度和冲击强度分别达到最大值63.2MPa和11.6kJ/m2,复合材料存储模量最大,热稳定性最好。  相似文献   

8.
中间相沥青制备高密度高强度炭/石墨材料   总被引:2,自引:0,他引:2  
以在不同氧化温度下制备的氧化中间相沥青为原料制备了具有不同密度的炭/石墨材料, 根据对样品物理性能和微观结构的研究得出最佳的工艺条件. 以150MPa压制的坯体经过2200℃石墨化后得到具有高密度(2.02g/cm3)、低孔率(2.03%)、大体积收缩(44.86%)、高的弯曲强度和压缩强度(70.3和123.3MPa)的样品. 该样品具有均匀致密的结构. 实验证明, 氧化中间相沥青是制备高性能炭石墨材料良好的前驱体.  相似文献   

9.
在醋酸酯淀粉(PMS)/聚乙烯醇(PVA)共混系统中引入超声分散的纳米TiO_2悬浮液,以山梨醇(SOR)和尿素为塑化剂采用流延工艺制备了纳米TiO_2改性复合膜,研究了纳米TiO_2的加入量以及SOR和尿素的配比对复合膜性能的影响,用红外光谱和扫描电镜对复合膜的结构和形貌进行了表征。结果表明适当的纳米TiO_2的量以及SOR和尿素的配比可有效地改善复合膜的力学性能和耐水性能,加入0.003g纳米TiO_2可将膜的拉伸强度提高71.1%,SOR和尿素质量比为1∶3时,膜的拉伸强度为39.40MPa,吸水率降至73.58%。  相似文献   

10.
纳米碳酸钙浸渍改性工艺对竹塑复合材料拉伸性能的影响   总被引:1,自引:0,他引:1  
为探寻竹纤维表面改性技术应用于植物纤维增强热塑性聚合物复合材料中的理论依据,用硫酸盐法制取竹纤维,以聚丙烯(PP)为基体,竹纤维为增强相,采用平压成型工艺制备竹纤维/PP复合材料,探索了纳米碳酸钙(CaCO_3)浸渍改性工艺对复合材料拉伸性能的影响,并利用场发射环境扫描电镜、力学测试机对其断口形貌和力学性能进行表征。结果表明:在温度25℃,搅拌速度500r/min的条件下,当纳米CaCO_3添加量为1.00×10-2 g/mL,分散剂EDTA-2Na添加量为8.50×10-4 g/mL,浸渍混合时间为25min时,竹纤维/PP复合材料的拉伸性能较优。  相似文献   

11.
高强电磁屏蔽薄膜材料在柔性器件、汽车电子和航空航天等领域具有广泛应用前景, 受珍珠母微纳米结构及其优异机械性能的启发, 利用简单的溶液共混及真空抽滤方法, 将纤维素纳米晶(CNC)和MXene混合, 经层层组装制备了高性能MXene基复合薄膜。结果表明: 薄膜的机械性能有了显著提高, 拉伸强度从18 MPa提高到57 MPa, 韧性从70 kJ/m 3提高到313 kJ/m 3, 同时保留了复合薄膜的高电导率(10 4 S/m)和优异的电磁屏蔽性能, 厚度8 μm时可达40 dB以上。  相似文献   

12.
以聚酰亚胺(PI)纤维和酚醛树脂(PF)为基体,通过对PI纤维表面进行多巴胺(PDA)修饰,并引入芳纶沉析纤维(AF)作为增强体,采用湿法成型和热压固化技术制备了15wt% AF和7.5wt% PDA的AF-PDA/PI-PF复合膜,重点研究了AF的添加和PDA改性修饰对PI-PF复合膜力学性能和摩擦磨损性能的影响,并探讨了其磨损机制。研究结果表明:当添加AF并对PI纤维进行PDA改性时,AF-PDA/PI-PF复合膜的应力为47.54 MPa,抗张指数为56.91 Nmg-1,层间结合强度为1 265.6 Jm-2,相比PI-PF复合膜分别提高了33.65%、41.67%和64.11%;磨损率为1.01×10-4 mm3J-1,约降低了34.84%,其磨损机制主要为黏着磨损。这是由于PI纤维与AF可形成"互穿网络"结构,此外,PDA对PI纤维的化学改性处理可增加PI纤维表面活性,AF和PDA对提高PI纤维与树脂间的界面结合力及AF-PDA/PI-PF复合膜的力学性能和摩擦磨损性能起到协同作用。   相似文献   

13.
为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。   相似文献   

14.
利用静电纺丝制备出玉米醇溶蛋白(zein)/聚乳酸(PLA)复合超细纤维,通过场发射扫描电镜(FE-SEM)观察了不同共混质量比超细纤维的形貌。然后通过对不同共混质量比的超细纤维膜进行红外光谱(FT-IR)和差示扫描量热(DSC)测试,分析比较了不同共混质量比复合超细纤维膜的结构,并进行了力学性能测试。结果表明,PLA...  相似文献   

15.
在气相渗硅制备C_f/SiC复合材料时,界面改性涂层非常重要。良好的界面改性涂层一方面起到保护碳纤维不受Si反应侵蚀的作用,另一方面起到调节纤维和基体界面结合状况。通过在C纤维表面制备CVD-SiC涂层来进行界面改性,研究CVD-SiC界面改性涂层对GSI C_f/SiC复合材料力学性能和断裂特征的影响,并分析其影响机制。结果表明:无CVD-SiC涂层改性的C_f/SiC复合材料力学性能较差,呈现脆性断裂特征,其强度、模量和断裂韧度分别为87.6MPa,56.9GPa,2.1MPa·m1/2。随着CVD-SiC涂层厚度的增加,C_f/SiC复合材料的弯曲强度、模量和断裂韧度呈现先升高后降低的趋势,CVD-SiC涂层厚度为1.1μm的C_f/SiC复合材料的力学性能最好,其弯曲强度、模量和断裂韧度分别为231.7MPa,87.3GPa,7.3MPa·m1/2。厚度适中的CVD-SiC界面改性涂层的作用机理主要体现在载荷传递、"阻挡"Si的侵蚀、"调节"界面结合状态3个方面。  相似文献   

16.
采用浇铸成型工艺制备含0.5wt%、长度分别为1 mm、3 mm、5 mm的短切玻璃纤维/环氧树脂(GF/EP)复合材料,研究含活性酚羟基和不含酚羟基的两种聚酰亚胺(PI)处理GF表面对纤维束拉伸强度及GF/EP复合材料力学性能的影响,并进一步研究PI处理GF对复合材料热性能的影响。研究结果表明,经过PI处理的GF,集束性和拉伸强度得到提高。含活性酚羟基聚酰亚胺(PI1)处理的GF拉伸强度由原丝束的517 MPa提高到1 032 MPa,不含酚羟基聚酰亚胺(PI2)处理的GF提高到986 MPa。当PI1处理的GF长度为3 mm时,GF/EP复合材料的力学性能最好,拉伸强度比未处理的提高23.62%,拉伸模量提高34.03%,弯曲强度提高28.74%,断裂韧性提高13.04%;PI2处理的GF,GF/EP复合材料拉伸强度提高15.87%,拉伸模量提高23.70%,弯曲强度提高14.11%,断裂韧性提高4.05%。此外,PI处理GF对GF/EP复合材料热性能也有一定程度的提高。  相似文献   

17.
以碳化温度为900 ℃的竹炭为导电骨料、 酚醛树脂为黏结剂、 炭黑为添加剂, 采用模压成型法制备竹炭/酚醛树脂复合导电材料。考察了竹炭的粒度、 酚醛树脂用量、 炭黑用量、 成型压力及固化温度等工艺因素对竹炭/酚醛树脂复合导电材料导电性和抗弯强度的影响。结果表明: 随着酚醛树脂用量的增加, 复合材料的抗弯强度增大, 电导率先增大后减小; 增加成型压力可同时提高复合材料的电导率和抗弯强度; 增大竹炭粉粒的粒径、 增加炭黑用量、 提高固化温度有利于改善复合材料的导电性, 但会不同程度地改变复合材料的力学性能。制备竹炭/酚醛树脂复合导电材料的最佳工艺条件为: 竹炭粒度≤75 μm, 树脂用量30%, 炭黑用量7.5%, 成型压力280 MPa, 固化温度180 ℃。   相似文献   

18.
重组竹横向准脆性断裂的断裂参数   总被引:1,自引:0,他引:1       下载免费PDF全文
重组竹是一种可再生的绿色建筑结构复合材料,具有结构致密均匀、力学性能高强稳定、尺寸因需而定、原材料利用率高等特点,在工程应用方面前景广阔。为研究重组竹横向准脆性断裂的断裂参数,对不同尺寸重组竹单边缺口(SEN)试样进行三点弯曲断裂试验,基于边界效应模型(BEM),引入平均粒径G这一重要的细观结构参量,建立重组竹细观结构与宏观力学性能之间的关系,由试验得到的峰值荷载Pmax计算重组竹横向准脆性断裂的断裂参数,包括抗拉强度ft和断裂韧度KIC。经正态分布分析得到重组竹断裂参数均值μf和μK,且在具有96%可靠性范围几乎覆盖了全部试验离散点,结果如下:ftf=216.36 MPa,KICK=16.76 MPa·m1/2。并利用实验室常规尺寸试样预测重组竹断裂参数,与试验结果之间的误差仅为3.17%。此外,随着重组竹试样缝高比α的增加,其断裂参数先增大后减小。   相似文献   

19.
开发和利用绿色生物质材料能够降低石油基聚合物的消耗,但与单根细菌纤维素(BC)相比,BC薄膜表现出较低的力学性能,限制了其应用领域。为协同提高BC复合薄膜的强度和韧性,本文以BC为基体,通过对其碱处理、2, 2, 6, 6-四甲基哌啶-氮-氧化物(TEMPO)氧化处理得到TEMPO氧化的BC(TOBC),并引入羧基化多壁碳纳米管(CNT)作为增强体,采用真空抽滤技术制备出CNT-TOBC复合薄膜,着重探究了CNT的添加对TOBC薄膜力学性能和微观形貌的影响,并探讨其增强增韧机制。研究结果表明:当CNT的添加量为7.5wt%时,CNT-TOBC复合薄膜的力学性能最佳,其断裂应力、伸长率及韧性分别为174 MPa、10.83%和12.01 MJ·m?3,相比纯的TOBC薄膜分别提高了56.76%、144.47%和295.07%,这主要归因于CNT与TOBC间的氢键相互作用、CNT内在高强度及外在增韧机制。研究结果为提高复合材料的界面结合和力学性能提供了一种切实可行的方法,并进一步拓宽了TOBC在柔性电子衬底、智能包装等领域的应用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号