首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
电解质材料是锂离子电池的关键材料之一。LiBF4、双草酸硼酸锂(LiBOB)及草酸二氟硼酸锂(LiODFB)是极具应用前景的3种含硼锂盐。介绍了3种锂盐各自的优缺点及研究近况,重点综述了它们的离子传导特性及与电极材料的相容性能。  相似文献   

2.
介绍一种新型的可用于锂离子电池的锂盐:LiODFB(lithium oxalyldifluoroborate).LiODFB独特的化学结构,使其结合了双乙二酸硼酸锂(LiBOB)及四氟硼酸锂(LiBF4)的优势.与LiBOB相比,LiODFB在碳酸酯中的溶解性和溶剂的黏度有了明显改善,从而使锂离子电池具有更好的低温性能和倍率放电性能.而与LiBF4相比,LiODFB能促进稳定固态电解液界面(solid electrolyte interface,SEI)的形成,改善了锂离子电池的高温性能.该种新型锂盐还具有以下优点:与金属锂的化学稳定性好,在高电位下能够很好地使铝箔得到钝化和提高锂离子电池安全性能及抗过充的能力.这些性能使得LiODFB成为一种极有可能替代LiPF6的新型锂盐.  相似文献   

3.
电解质材料是锂离子电池的关键材料之一,它直接影响电池的性能。新型硼酸锂盐由于种类繁多且环境友好而越来越引起人们的重视。本研究详细介绍了近年来应用于锂离子电池的各种新型硼基锂盐LiBOB,LiMOB,LiBMB和LiODFB。对这些硼基锂盐的合成方法、电化学性能、稳定性、在溶剂中的溶解性、电导率进行了论述。并讨论了它们的优缺点及在锂离子电池中的应用前景。  相似文献   

4.
介绍了一种新型锂盐二氟草酸硼酸锂(LiODFB)的基本性质和制备进展,以及在锂离子电池应用中的基本特性.使用LiODFB电解液的电池电化学性能优良、对电极材料相容性较好、与其他锂盐混合使用性能良好,有望成为动力电池用电解质锂盐。  相似文献   

5.
用乙二酸、硼酸及氢氧化锂作原料,通过固相法合成新型硼基锂盐——双乙二酸硼酸锂(LiBOB),将粗产品放在沸腾的四氢呋喃/二乙醚混合溶剂中提纯。对产品进行X射线衍射检测,结果证明所制备的产品为LiBOB,且产量高。依据电解质体系优化设计原理,将0.5mol/L LiBOB-EC/PC/DMC作为电解质体系与正极材料LiCoO2组装成扣式电池,对电池进行充放电、循环性能及倍率性能测试,得出自制LiBOB的新型电解液体系与电极材料LiCoO2表现出较好的相容性。  相似文献   

6.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

7.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

8.
中国锂二次电池正极材料的发展趋势和产业特点   总被引:9,自引:0,他引:9  
一、锂离子电池正极材料发展对锂离子电池而言,其主要构成材料包括电解液、隔离膜、正负极材料等。一般来说,在锂离子电池产品组成成分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终二次电池产品的性能指标。而正极材料在电池成本中所占比例可高达40%左右。目前正极材料中,以过渡金属氧化物所表现出的性能最佳,主要有层状盐结构的锂钴氧化物(LiCoO2)、层状盐结构的锂镍氧化物(LiNiO2)以及尖晶石型(LiMn2O4)和层状盐结构(LiMnO2)的锂锰氧化物。从合成工艺上控制材料结构的规整性和稳定性是获得比能量高、循环寿命长的锂…  相似文献   

9.
锂离子电池炭负极材料结构及嵌锂机理研究进展   总被引:1,自引:0,他引:1  
炭材料取代金属锂作为负极后,锂离子电池在商业应用上取得了成功,并以其高能量密度在各种电子设备上广泛使用.锂离子电池的性能很大程度上取决于炭负极材料的微观结构,不同种类的炭材料其电化学性能有很大差别.对近几年所研究的可逆储锂炭材料进行了综述,着重总结了炭负极材料的种类、结构及其嵌锂机理,并展望了锂离子电池炭负极材料的研究进展.  相似文献   

10.
2008年6月,第十四届国际锂电池会议在天津滨海新区召开。与会专家一致认为,相对于传统的铅酸电池、镍氢电池、镍镉电池等其他二次电池,锂离子电池以其电容量大、安全性佳、体积轻巧、耐高温及循环寿命长等优异性能正在逐步占领市场,未来将成为二次电池市场的主力;锂离子电池的重要构成部分——正极材料,对锂离子电池的发展起着决定性的作用,目前常用的锂离子电池的正极材料主要有钴酸锂、镍钴锰、锰酸锂、磷酸铁锂,其中磷酸铁锂以其明显的优势获得了业内人士的认可,大家一致认为未来2—3年内磷酸铁锂必将成为锂离子电池材料的主流。  相似文献   

11.
随着新能源汽车、可携带式电源和储能等领域的快速发展, 人们对锂电池性能提出了更高的要求, 高性能锂离子电池的重要性日益突出。电解质是锂离子电池的重要组成部分, 对于电池的输出电压、倍率性能、适用温度范围、循环性能和安全性能等有着重要的影响。而锂盐作为液体电解质(电解液)的关键组分, 是决定电解液性能的重要因素。电解液中不同种类的锂盐及其在溶液中不同的溶剂化状态, 会对电极/电解液界面的成膜性能和锂离子的迁移行为等产生重要影响, 进而显著影响电解液的电化学性能。本文介绍了近年来新型电解质锂盐的性质特点和在不同种类电池中的应用。同时, 单一的锂盐不能完全满足锂电池对电解液的要求, 因而人们尝试采用复合锂盐使功能更完善, 催生了多盐体系电解液。多盐体系电解液在拓宽电池工作温度、抑制金属离子溶出和提高倍率性能等方面表现出明显优势。同时, 借助于浓度的提升改变锂离子的溶剂化结构, 研究人员提出了高浓度电解液。高浓度电解液在防止石墨剥离、拓宽电解液电化学窗口、抑制铝箔腐蚀和提高金属锂沉积/溶出性能等方面具有明显优势。并且, 本文重点讨论了这两种电解液对电池性能提升的机理。最后, 对锂盐基电解液尤其是这两类新型电解液的发展趋势和应用前景进行了展望。  相似文献   

12.
储锂材料是影响锂离子电池性能的关键因素之一,已成为国际上锂离子电池材料研究领域的热点和重点。综述了锂离子电池负极储锂材料的研究进展,但非简单地重复负极储锂材料发展的全部研究。重点关注了三大类负极储锂材料的电化学特性、储锂机理和主要电化学改性途径,并指出了三类负极储锂材料存在的技术问题和今后的研究方向。  相似文献   

13.
锂离子电池用有机电解液和聚合物电解质的研究进展   总被引:4,自引:0,他引:4  
从导电锂盐、有机溶剂和添加剂三个方面详细综述了锂离子电池用有机电解液的研究进展。同时针对聚合物电解质的组成、结构和性能的差异,将其分为四类,阐述了它们的优缺点及其在锂离子电池中的应用与研究进展。最后展望了电解质的发展前景。  相似文献   

14.
《工程(英文)》2018,4(6):831-847
Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However, LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehicles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as the cathode, receive the most intensive interest due to their high energy density and excellent potential for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions, as well as to technological improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science. Finally, possible directions for further development in Li batteries are presented. Next-generation Li batteries are expected to promote the sustainable development of human civilization.  相似文献   

15.
郑玥雷  陈人杰  吴锋  李丽 《无机材料学报》2013,28(11):1172-1180
锂离子电池玻璃态电解质同晶体型电解质相比较具有导电性各向同性、锂离子电导率高等诸多优点, 开发在室温下具有较高的离子电导率及良好的化学、电化学稳定性的玻璃态电解质材料已经成为锂离子电池领域的重要研究方向之一。本文介绍了各种玻璃态电解质体系的导电特性及导电机理, 并重点分析与讨论混合网络形成体效应在一些典型玻璃态电解质体系中的微观作用机理。本文还总结了混合网络形成体效应在玻璃态电解质中发生的前提条件, 并指出深入研究玻璃态电解质的导电机理对开发出具有优异电化学性能的无机非晶固态电解质体系具有重要的指导意义。  相似文献   

16.
综述了二次锂离子电池聚合物电解质的最新研究进展,对不同类型的聚合物电解质按其基体进行分类,包括常见的几种聚合物基体以及近年来发展起来的几种新型聚合物基体。对于每类基体相关的研究成果,主要关注的是电化学性能。对一些性能优异的聚合物电解质体系及其相应的制备方法,给出了较为全面的概述。与使用液体有机电解质的二次锂离子电池相比...  相似文献   

17.
基于石榴石固体电解质的固态锂电池面临着固体电解质和固体电极之间较大的界面阻抗问题, 导致循环性能不佳。为了解决此问题, 本课题组制备并研究了LiNi1/3Co1/3Mn1/3O2基正极、Li6.4La3Zr1.4Ta0.6O12陶瓷固体电解质和金属锂负极构成的固态锂电池。在构筑LiNi1/3Co1/3Mn1/3O2基正极时采用三种不同的导电碳, 研究表明, 与科琴黑和超导炭黑相比, 使用气相生长碳纤维(Vapor Grown Carbon Fiber, VGCF)时, 固态电池有更优异的循环性能。这是因为充电到高电压时, VGCF比另外两种导电剂引起的副反应更少, 从而减少能增加电池内阻的碳酸盐类副产物的形成。这些结果说明电子导电剂的稳定性对固态锂电池的循环性能有重要影响。  相似文献   

18.
Owing to their safety, high energy density, and long cycling life, all‐solid‐state lithium batteries (ASSLBs) have been identified as promising systems to power portable electronic devices and electric vehicles. Developing high‐performance solid‐state electrolytes is vital for the successful commercialization of ASSLBs. In particular, polymer‐based composite solid electrolytes (PCSEs), derived from the incorporation of inorganic fillers into polymer solid electrolytes, have emerged as one of the most promising electrolyte candidates for ASSLBs because they can synergistically integrate many merits from their components. The development of PCSEs is summarized. Their major components, including typical polymer matrices and diverse inorganic fillers, are reviewed in detail. The effects of fillers on their ionic conductivity, mechanical strength, thermal/interfacial stability and possible Li+‐conductive mechanisms are discussed. Recent progress in a number of rationally constructed PCSEs by compositional and structural modulation based on different design concepts is introduced. Successful applications of PCSEs in various lithium‐battery systems including lithium–sulfur and lithium–gas batteries are evaluated. Finally, the challenges and future perspectives for developing high‐performance PCSEs are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号