首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用镁扩散方法制备了Pr6O11纳米颗粒添加的MgB2超导块体,研究了Pr6O11掺杂对其临界电流密度(Jc),不可逆磁场(Hirr)和上临界磁场(Hc2)的影响。实验结果表明Pr6O11纳米颗粒掺杂明显提高了块体的Jc,Hirr和Hc2,但没有降低其超导转变温度Tc。在20 K自场条件下,质量比为1 wt.% Pr6O11掺杂的MgB2块体的Jc较没掺杂样品提高了将近5倍, Jc=3.61×105A/cm2。在10 K温度下,MgB2块体Hc2 和Hirr较没掺杂样品分别提高了1.9 T and 2.6 T。同时讨论了Pr6O11纳米颗粒掺杂对MgB2块体的电性能和磁通钉扎机制的影响。  相似文献   

2.
MgB2超导体临界温度为39 K,具有价格低廉和临界转变温度相对较高等优点,具有工程应用前景,然而其大尺度应用还依赖于超导性能的改善。经过系统的研究发现高能球磨和元素掺杂是提高MgB2磁场下Jc性能最有效的方法。本文介绍了采用高能球磨法制备MgB2的研究现状,采用高能球磨能有效细化晶粒,有利于提高超导芯丝的致密度,强化MgB2晶粒的连接性,同时晶粒细化形成的更多晶界能形成钉扎中心,进一步提高线/带材在高磁场下的临界电流密度。我们还介绍了通过分步反应法和高能球磨在常压条件下合成MgB2,高能球磨法可以减少MgB2长线中的孔洞并提高粉体密度。  相似文献   

3.
MgB_2线带材的加工经历了近15年的研究与发展,生产出的线带材可以在制冷机、较低磁场下使用,另外生产MgB_2线带材的原材料相对低廉,应用前景十分广泛。本文从MgB_2传统线带材加工和后续工艺方法的优化出发,概述了MgB_2线带材研究的进展,详细介绍了内部镁扩散法,即用中心镁棒代替传统镁粉,使用铜镍材料为包套,钽或铌为阻隔层并与镁之间填充硼粉,热处理后得到致密的MgB_2相。论述了未来MgB_2线带材加工的研究重点。  相似文献   

4.
A systematic study on the superconducting properties of polycrystalline MgB2 synthesized by in situ Powder-In-Sealed-Tube technique is carried out at different temperatures (750–900 °C). Both XRD and SEM results show well-crystallized MgB2 grains in all the samples and grain size is found to be increasing with the sintering temperature. Sharp superconducting transitions are observed for all samples, irrespective of sintering temperatures, which implies the high degree phase purity and homogeneity of MgB2 formed, while JC(H) plot gives sample dependent critical current density. The samples heat treated at relatively low temperatures show enhanced flux pinning and hence improved JC(H) performance. The reduced grain size and hence increased density of grain boundary pinning centers of MgB2 bulks synthesized at low temperature are mainly responsible for the enhanced flux pinning and JC.  相似文献   

5.
MgB2 nanoparticles were synthesized by a one-step reactive sintering method. The sample was heated from room temperature to 994 K, and then directly cooled down at a rate of 40 K/min. The results of X-ray diffraction indicate that MgB2 superconductors with high quality were successfully prepared, and only a few impurities were detected on it. The sample consisted of two distinguishable structures by the TEM observation: nanoparticles and single crystals, which is a result of nonequilibrium conversion under the direct cooling condition. The nanoparticles with a diameter of about 10–20 nm are considered to be at the onset for the formation of MgB2 phase. Transition temperature (Tc) and critical current density (Jc) of the compound structures were determined to be 38.5 K and 1.8 × 105 A cm−2 by means of SQUID measurement, which indicate good superconducting properties. The inter-diffusion and dislocation incorporation mechanisms for the formation and growth of MgB2 nanoparticles are also proposed, and the further growth will be accelerated due to an adequate holding time at 994 K.  相似文献   

6.
This study aims at examining the mechanical properties of MgB2 wires fabricated with PIT method by studying the effect of tensile and bending stresses on their current carrying capacity. Wires are mounted on a tensile machine and are subjected to different load increments within both the elastic and the plastic regions. The current carrying capacity is measured for each load and the behavior of Ic versus stress/strain is studied. Microstructures of MgB2 core are studied for different loads by using SEM. For bending tests, two cases are examined. The first case is to anneal MgB2 wires then wind them on mandrels with different diameters, while the second case is to wind un-annealed wires on the same mandrels with different diameters then anneal the winded wires. A comparison between both cases is made using SEM for all different diameters and measuring the corresponding Ic. The behavior of Ic versus bending strain is studied. This whole study aims at giving a clear picture of the optimum loading, bending and processing conditions at which MgB2 wires will possess a high current carrying capacity for practical applications.  相似文献   

7.
Ni sheathed multifilamentary MgB2 wires with Fe barrier and Cu stabilizer were prepared by the in situ Powder-In-Tube (PIT) method. After rolling, the ends of the wires were sealed by a simple capping technique and the wires were directly heat treated in air, without vacuum or any inert atmosphere. The quality of the wires was assessed by analysing the phase assemblage and measurement of superconducting properties such as R-T, JC-T and JC-H. Phase analysis revealed that only traces of MgO was formed in the superconductor core. Typical multifilamentary wires prepared by this method showed a TC ≈ 38.5 K and ΔTC ≈ 1 K and JC of the order of 105 A/cm2 at 6 K (0 T) and 104 A/cm2 at 4.2 K (6 T) respectively. These values are quite comparable with the values obtained for wires heat treated in inert atmosphere.  相似文献   

8.
High density nano-crystalline MgB2 bulk superconductors with induced pinning centres were prepared from elemental precursors by a sequence of ball milling, heat treatment, and final pressing. The XRD results revealed the main phase was MgB2 with a minor component of MgO. The magnetic moment versus temperature indicated that the transition temperature of MgB2 samples was around 34 K, which is less than the typical transition temperature of commercial powders and also the transition temperature strongly depended on the milling time. It is well known that introduction of defects, grain boundaries and impurities act as effective flux pinning centres in MgB2 and results in increased critical current density, Jc and decreased the transition temperature, Tc. The magnetization measurements were performed using VSM at 10 K, 20 K and 30 K, and the MH curves indicated a complete flux jump effect, which is a severe problem for the application of superconductors. It was determined that a noticeable amount of heating (0.3 K jumps at 10 K) occurs at these jumps. In addition, it was found that the sweeping rate of magnetic field and the size of bulk sample are very effective to promote the flux jumping and whereas a low sweeping rate (12 Oe/s) avoids these “avalanches”, consistent with a kind of supercritical phenomenon: going slower allows the field gradients to stay close enough to equilibrium so that the avalanche effect is not triggered. In contrast, the sweeping rate of 100 Oe/s leads to numerous jumps.  相似文献   

9.
Much research on MgB2 has been carried out because MgB2 has a higher transition temperature (Tc) of 39 K than that of other metallic superconductors and because the bulk form of MgB2 has exhibited high current density. In this study, Mg powder of less than 10 μm and B powder of less than 3 μm with equivalent MgB2 composition were mixed simply under argon atmosphere. In order to consider the effect of a pinning element on the superconducting properties, activated carbon of 5 at.% was added to mixed powders. The MgB2 bulk was fabricated with mixed powders in graphite molds at the various temperatures by spark plasma sintering. The formation of the MgB2 phase was confirmed with Differential Thermal Analysis (DTA) at 550 °C. The relative density of sintered MgB2 was 97 %, which increased as the sintering temperature increased. The sintering proceeded initially in the solid state and then by liquid phase sintering with increasing temperature without abnormal grain growth. In the Physical Property Measurement System (PPMS) result, the Tc was about 37 K in the carbon-added sintered sample. The 300 nm size MgB2 grains of hexagonal shape were formed after spark plasma sintering, but the MgB4 phase did not produce precise Tc.  相似文献   

10.
Ceramic insulation coatings were produced on Cu/MgB2 wires, which were fabricated by Hyper Tech Research Inc., using Continuous Tube Forming and Filling (CTFF) process, from the solution of Zr, and Y based organometalic compounds, solvent and chelating agent using reel-to-reel sol–gel technique for MgB2 coils. Y2O3–ZrO2/Cu/MgB2 wires were annealed at 700 °C for 30 min with 5.8 °C/min heating rate under 4% H2–Ar gas flow. Residual stresses were examined for Cu/MgB2 wire and YSZ coatings with varying thicknesses. It was observed that displacement values are independent from YSZ thicknesses and the maximum effective stress value is in the Cu region. The surface morphologies and microstructure of samples were characterized using SEM. SEM micrographs of the insulation coatings revealed cracks, pinholes and mosaic structure.  相似文献   

11.
The effects of starting Mg particle size on the reactivity of Mg with B, and on remnant Mg in in situ MgB2, and their influence on the superconducting system are studied. Samples were prepared by a powder-in-sealed tube (PIST) method, heat treated at 850 °C for 2 h in air and were characterized using XRD, SEM and magnetization measurements. As the particle size of Mg powder increases, residual Mg increases significantly. The MgB2 prepared using smaller sized Mg powder does not have any residual Mg and show the best infield critical current density (JC (H)).  相似文献   

12.
Plastic deformation and texture development in polycrystalline YBa2Cu3O7? δ has been studied to expedite the process development of high-critical-temperature (high-Tc) superconducting wires and tapes. It is anticipated that deformation texture will be a major processing consideration in terms of maximizing critical current density, assessing conductor-fabrication options in light of critical current density, and developing such mechanical properties as strength, toughness and thermal fatigue. The intrinsic texture development in YBa2Cu3O7? δ deformation processing should be highly beneficial, insofar as the c axes of the crystals tend to become oriented along the compression axis. This means that conducting tapes and wires formed by rolling, extrusion and drawing can develop textures with the c axis in the transverse or radial direction, thus maximizing the flow of current along the length of the conductor.  相似文献   

13.
The lattice effect induced by tensile strain on the superconductivity of graphene–MgB2 composites was studied systematically to deduce the electron–phonon coupling (EPC) and the multiple superconducting gap behavior. Compared with nano-carbon doped MgB2, graphene–MgB2 composites show larger lattice parameters and higher critical superconducting transition temperatures (Tc). The EPC strength of MgB2 with ∼2 wt.% graphene addition is even higher than that of the pure reference sample, as estimated from the Sommerfeld constant. The π gap was found to be expanded by graphene addition through the analysis of heat capacity data, and it is responsible for both the enhanced EPC strength and the weak dependence of Tc on the graphene content.  相似文献   

14.
《Intermetallics》1999,7(2):117-140
The development of high-critical-current superconducting A15 conductors able to carry current in very high magnetic fields (25–30 T) is recognised as an enabling technology for the construction of second-generation NMR magnets operating at frequencies well above 1 GHz. This paper highlights the current status of development of the niobium-aluminide intermetallics with special attention to Nb3Al, and Nb3(Al1-x,Gex). Discussion is focused on the materials science aspects of conductor manufacture, such as β-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2. Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc(B) peak effect occurs in some of the Nb3Al wires. The case is made that mechanical alloying during final wire preparation plays an important role in diminishing the peak effect, except in the case of A15 formation from a mixture of ‘σ-phase’ and Nb. Further study of the influence of mechanical alloying on the maximisation of the critical current density at high magnetic fields is crucial to the understanding of the peak effect formation in tapes formed from ‘σ-phase’. Additionally, many aspects of conductor design requirements such as stress, strain, a.c. losses, thermal and electromagnetic stabilisation, are discussed with reference to literature sources.  相似文献   

15.
The core of a single-core MgB2/Cu,Nb composite, which has been prepared by the ex-situ technique and exhibits a high critical current equal to 427 A (at 0 T and 4.2 K, j c ≥ 105 A/cm2), has been studied using various structural methods. Two kinds of MgB2 crystals were observed; those of the first kind is large, highly dense crystals characterized by a low oxygen content (2–8 at %) and the others are fine, weakly coupled crystallites characterized by high oxygen content (4–21 at %). To perform a comparative analysis of the structures, we have also studied an MgB2 bulk sample synthesized at 1000°C. It was found that two phases with the same lattice are formed; they differ in the magnesium and boron contents (within the homogeneity range), impurity oxygen content and microstructure as well but differ slightly in the lattice parameters. The two-phase state of MgB2 bulk sample is due to the mechanism of its formation, which includes the melting of magnesium, the dissolution of solid boron in it, and the crystallization of MgB2 from the melt with the formation of dendrite-like structure characterized by corresponding redistribution of components and impurities. To a certain degree, the two-phase structure of MgB2 bulk sample is inherited by the MgB2/Cu,Nd composite prepared by ex-situ technique (annealing of composite at 700°C). It was shown that oxygen in the MgB2 compound is the destabilizing factor and leads to the transformation of the superconductor into MgO.  相似文献   

16.
GdBa2Cu3O7−x (GdBCO) films have been deposited on LaAlO3 (LAO) (0 0 l) single crystal substrates by trifluoroacetate metal organic deposition (TFA-MOD) method. The effects of oxygen partial pressure and firing temperature on microstructure and critical properties of GdBCO films were discussed. The phase formation, texture and microstructure of films were characterized by X-ray diffraction and scanning electron microscopy. The oxygen partial pressure was considered to play a great role for formation of impurity phase and a-axis oriented grains. The degree of c-axis orientation was also influenced by the firing temperature. The highly c-axis oriented GdBCO film obtained at 815 °C under an oxygen partial pressure of 100 ppm has a high performance critical current density Jc (77 K, self field) = 1.8 MA/cm2.  相似文献   

17.
《Acta Materialia》2004,52(6):1543-1553
Mechanical milling of Mg1  xFexB2 with x=0–0.4 led to the formation of amorphous phase. For x=0, the hexagonal MgB2 phase was formed after a heat treatment at 450 °C or above with critical temperature Tc=38–40 K. Fe-substituted MgB2 phase was formed after annealing at 450 °C or above when x=0.05, 0.1 and 0.2. Fe solubility in the MgB2 phase decreased with increasing annealing temperature, while lattice parameters (a and c) decreased. It has been found that critical temperature Tc increased with increasing annealing temperature. For Mg0.6Fe0.4B2 powder, MgB2 phase could not be formed after crystallization. Single solid-solution MgB2 phase could be formed in Mg0.95Fe0.05B2 after annealing at 450 °C. This sample exhibited paramagnetic between 30 and 290 K with a high magnetic moment of μFe=5.5–6.0μB. An anomaly (minimum in reciprocal magnetic susceptibility) was observed below 30 K, accompanied by magnetic splitting in Mössbauer spectroscopy.  相似文献   

18.
Abstract

Oxidation in air has been studied on three nickel/20% chromium alloy wires having,respectively, lives of 35, 140 and 600 hours, as assessed by the ASTM accelerated life-test for electrical resistance materials (ASTM B76–65). Total oxygen consumption was measured during periods of continuous and of intermittent heating (2 minutes on–2 minutes off). Separate measurements were made of the oxygen used in forming chromic acid anhydride (CrO3), condensed on a water cooled tube surrounding the heated wires, and of the oxygen consumed in formation of adherent oxide. Comparison of the scale shedding properties of the wires was obtained by difference.

The wire having the shortest life showed the most rapid rate of total oxygen-consumption, the greatest tendency to shedding of scale, and the lowest rate of emission of chromic acid anhydride.

The longest-life wire consumed oxygen at the slowest rate in intermittent, but not in continuous, tests. On that wire the scale was less adherent than on the wire of intermediate life, and it is suggested that the greater uniformity of scale shedding from the long life wire was a favourable factor.  相似文献   

19.
In this article, experiments designed to ascertain the percolative nature of current flow in high critical-current density (Jc) polycrystalline superconductors are reviewed. A direct correlation between the grain-orientation texture with current transport in high-Jc TlB2Ca2Cu3Ox thick films and Bi2Sr2Ca2Cu3Ox powder-in-tube tapes is obtained. Magnetooptical visualization of the current flow in the same regions confirms the percolative nature of current flow. Furthermore, numerical modeling of the current flow based on the observed grain boundary character distribution and the effects of the grain boundary misorientation angle on (Jc) was found to predict the percolative nature of current flow. These studies indicate that in order to increase the (Jc) further, increased fractions of small-angle boundaries are required and, hence, provide a research direction for the next generation of high-temperature superconducting wire.  相似文献   

20.
The Mg-added (0%, 5%, and 10%) MgB2/Cu superconducting wires were prepared by the powder-in-tube (PIT) method. Vickers micro-indentation tests were performed on the samples with different peak loads at room temperature. The loading-unloading (P-h) curves were analyzed by the displacement approach to indentation. It was found that hardness (H) and the effective elastic modulus (E) values increased with Mg-added. In addition, these values showed peak load dependence (i.e. indentation size effect (ISE)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号