首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文采用一种改进型镁扩散法成功制备出密度达到1.95g/cm3的MgB2超导块材。论文研究了不同的热处理条件对MgB2块材的超导转变温度(Tc)和临界电流密度(Jc)性能的影响。采用最佳热处理条件制备的MgB2超导体Tc和Jc分别达到了38.1K和0.53MA/cm2(10K,自场)。为了改进镁扩散法MgB2超导体中弱的高场磁通钉扎性能,本文还研究了nano-Pr6O11和C掺杂对MgB2超导体的临界电流密度和不可逆场(Hirr)的影响。结果表明C掺杂的MgB2超导体临界电流密度在10K,6T下达到了104A/cm2,该结果比未掺杂MgB2超导体在同样条件下性能提高了两个量级,甚至比固态反应法制备的nano-C掺杂MgB2超导体性能更好。利用该方法制备的nano-Pr6O11掺杂的MgB2超导体在10K,2T下也比未掺杂样品Jc提高达9.4倍。根据大量的实验结果和理论分析我们提出基于改进型镁扩散法和化学掺杂,包括纳米粒子和C掺杂,很有可能是一种制备高性能MgB2超导体非常有效的途径。  相似文献   

2.
分别采用Fe和Nb作为阻隔层包套材料,通过原位粉末装管法工艺(in-situ PIT)制备出石墨烯掺杂的MgB2/Fe(Nb)/Cu线材和Nb包套未掺杂的MgB2单芯线材。在高纯氩气保护下、670~800 ℃保温2 h热处理线材。X-ray衍射显示,670 ℃热处理的线材主相均为MgB2超导相,其中Fe包套线材的MgB2相中含有Fe2B杂相。三种线材的微观结构显示,未掺杂线材基体中的孔洞相对较大,而石墨烯掺杂的Fe、Nb包套线材晶粒之间的孔洞相对较小。线材样品的拉伸性能结果显示,热处理前由于加工硬化,三种线材的拉伸应变值远远低于热处理后的拉伸应变值,其中铁包套线材的硬化最为严重,但无论是否热处理,Fe包套样品的强度都是最大的。四引线法传输性能测试显示,670 ℃热处理Nb包套掺杂线材的临界电流密度(Jc)在4.2 k,2 T、4 T、6 T范围内均高于Fe包套掺杂线材的Jc,石墨烯掺杂线材(Nb、Fe包套)在2 T具有更好的传输性能,Nb包套掺杂线材的Jc最高可达到4.5×105A/cm2。大于4 T后,两种包套的掺杂线材的Jc均低于未掺杂的线材,Fe包套样品的超导性能降低更大,显示其掺杂未全部进入晶格,导致在高场失去了磁通钉扎作用。  相似文献   

3.
这次工作通过排水法研究了采用混合催化剂Co2B/ Pr6O11的硼氢化钠的水解过程。Co2B与Pr6O11的比例和混合催化剂Co2B/ Pr6O11的加入量对硼氢化钠放氢量的影响非常明显。当掺杂量在1-6%之间变化时,试样的放氢速率随着掺杂量先增加后减少。相比之下,混合催化剂Co2B/ Pr6O11的加入量以及混合比例对NaBH4的放氢量的影响并不明显。然而,NaBH4被Co2B / Pr6O11催化后,硼氢化钠的放氢量明显被改变了,所有的掺杂试样的放氢量在410-525ml之间。在所有试样中,掺杂4% (70%Co2B /30%Pr6O11)的试样具有最大的放氢速率540ml/min和最大的放氢量540ml.  相似文献   

4.
钨酸铋(Bi2WO6),结构最简单的Aurivillius相化合物,是近期受到研究者关注的新型光催化材料。然而,光催化剂粉末在反应介质中难被回收,工业化应用成本较高。本文用三步方法合成了可回收的Fe3O4/SiO2/Bi2WO6磁性复合光催化剂,通过溶剂热法合成具有磁性的Fe3O4,用溶胶凝胶法在Fe3O4表面覆盖SiO2层,后将磁性颗粒与Bi2WO6纳米片相结合。光催化剂的形貌结构及性能通过XRD、SEM、PL、UV-vis进行表征测试。结果表明,直径约500 nm的Fe3O4微球附着在边长约500 nm的Bi2WO6纳米片的表面,SiO2在两者之间起到了粘连作用。光催化剂Fe3O4/SiO2/Bi2WO6对于罗丹明B的光降解活性较好,且有一定磁性,可以通过外加磁场将其从溶液中分离,有较大的应用潜力。  相似文献   

5.
以La(NO3)2、MnC4H6O2、柠檬酸和乙二醇(EG)为主要原料,NH4VO3为掺杂试剂,采用溶胶凝胶法制备LaMnO3和LaMn1-XVXO3粉体。采用XRD进行晶体结构表征;采用甲基橙(MO)模拟污水,进行光催化降解实验。研究了煅烧温度、催化剂用量和掺杂量对光催化氧化降解率的影响,讨论MO降解的动力学规律。结果表明700-900 ℃煅烧温度不影响LaMnO3晶体结构和光催化氧化降解率;掺杂量影响LaMn1-XVXO3晶体结构,光催化氧化降解率随着掺杂量增加而呈下降趋势;光催化氧化实验中,LaMn1-XVXO3粉体效果高于LaMnO3,两者均符合一级动力学方程。  相似文献   

6.
MgB2超导体临界温度为39 K,具有价格低廉和临界转变温度相对较高等优点,具有工程应用前景,然而其大尺度应用还依赖于超导性能的改善。经过系统的研究发现高能球磨和元素掺杂是提高MgB2磁场下Jc性能最有效的方法。本文介绍了采用高能球磨法制备MgB2的研究现状,采用高能球磨能有效细化晶粒,有利于提高超导芯丝的致密度,强化MgB2晶粒的连接性,同时晶粒细化形成的更多晶界能形成钉扎中心,进一步提高线/带材在高磁场下的临界电流密度。我们还介绍了通过分步反应法和高能球磨在常压条件下合成MgB2,高能球磨法可以减少MgB2长线中的孔洞并提高粉体密度。  相似文献   

7.
以仲丁醇铝为前驱体,采用溶胶-凝胶法结合丙酮-苯胺原位生成水技术,通过乙醇超临界干燥,制备出不同含量(1.5 mol%~12 mol%)La2O3掺杂的氧化铝气凝胶。采用电子扫描电镜(SEM)、透射电子显微镜(TEM)、X线衍射仪(XRD)、N2吸附分析仪等仪器表征了La2O3掺杂对氧化铝气凝胶的微结构和耐温性能的影响。结果表明:La2O3的引入使氧化铝气凝胶的形貌由球状颗粒向大的片状结构转变。适量的La2O3掺杂能提高氧化铝气凝胶的比表面积,9 mol% La2O3掺杂的氧化铝气凝胶比表面积最大。通过La2O3掺杂,能够抑制氧化铝晶粒在高温下的生长和α-Al2O3的相变,提高氧化铝气凝胶的耐温性能。1200℃热处理后,La2O3掺杂的氧化铝气凝胶仍维持在θ-Al2O3,比表面积为86.5 m2/g,高于未掺杂的氧化铝气凝胶(46 m2/g)。  相似文献   

8.
本文采用磁控溅射技术(MS)和混合物理化学气相沉积法(HPCVD)在单晶Al2O3基底上制备MgB2/Mo多层膜。通过扫描电子显微镜(SEM)、X射线衍射(XRD)和标准四线法对样品的表面形貌、晶体结构和超导特性进行了测量研究。实验结果表明随着后续MgB2沉积温度的增加各膜层结晶程度进一步提高,晶粒尺寸不断增大,各自保持着良好的物质稳定性。在730℃温度下生长的MgB2薄膜的超导转变温度Tcon和零电阻温度Tc0分别为39.73K~39.53K,剩余电阻率~0.77μΩcm,表明样品处于干净极限。  相似文献   

9.
通过模板辅助溶胶-凝胶法制备了一系列的Mn1-xZnxFe2O4(0≤x≤1,步长为0.2)纳米粉体。利用XRD和VSM对材料的物相和磁性能进行了表征,主要研究了Mn1-xZnxFe2O4分子式中Zn含量的变化对样品的微观结构和磁性能的影响。实验结果表明,具有不同Zn含量的Mn1-xZnxFe2O4样品均为尖晶石结构;随着Zn含量的增加,样品的晶面间距d、平均晶粒尺寸D、饱和磁化强度Ms和居里温度Tc都呈现出下降的趋势,而样品的矫顽力Hc则呈现出先升高后降低的趋势。分析认为,Ms的下降可以用Yafet-Kittel倾角理论解释,Tc的降低归因于晶格中反铁磁性耦合的降低,而Hc的变化则主要是由于材料的磁晶各向异性常数K1的变化引起的。  相似文献   

10.
传统的Cu包套原位粉末装管法(in situ PIT)制备多芯MgB2超导线材时,易于出现断芯、断线现象。针对一问题,本实验中以强度较高的梦乃尔合金(Monel 400)作为包套材料,以旋锻、拉拔、轧制及中间热处理相结合的加工手段成功的制备出直径Φ1.0 mm、37芯结构的多芯MgB2超导长线材。微观结构分析表明多芯线材中MgB2芯丝及替换芯丝等亚组元的分布较为规整,阻隔层未出现明显破损现象,最终线材中MgB2超导芯丝的平均直径约80 μm。室温拉伸性能显示热处理前MgB2线材的屈服强度为759 MPa,热处理后的线材为248 MPa。4.2 K、4 T下,线材的临界电流密度Jc达到2.31×105 A.cm-2,工程临界电流密度达到3.16×104 A.cm-2。  相似文献   

11.
A systematic study on the superconducting properties of polycrystalline MgB2 synthesized by in situ Powder-In-Sealed-Tube technique is carried out at different temperatures (750–900 °C). Both XRD and SEM results show well-crystallized MgB2 grains in all the samples and grain size is found to be increasing with the sintering temperature. Sharp superconducting transitions are observed for all samples, irrespective of sintering temperatures, which implies the high degree phase purity and homogeneity of MgB2 formed, while JC(H) plot gives sample dependent critical current density. The samples heat treated at relatively low temperatures show enhanced flux pinning and hence improved JC(H) performance. The reduced grain size and hence increased density of grain boundary pinning centers of MgB2 bulks synthesized at low temperature are mainly responsible for the enhanced flux pinning and JC.  相似文献   

12.
MgB2 nanoparticles were synthesized by a one-step reactive sintering method. The sample was heated from room temperature to 994 K, and then directly cooled down at a rate of 40 K/min. The results of X-ray diffraction indicate that MgB2 superconductors with high quality were successfully prepared, and only a few impurities were detected on it. The sample consisted of two distinguishable structures by the TEM observation: nanoparticles and single crystals, which is a result of nonequilibrium conversion under the direct cooling condition. The nanoparticles with a diameter of about 10–20 nm are considered to be at the onset for the formation of MgB2 phase. Transition temperature (Tc) and critical current density (Jc) of the compound structures were determined to be 38.5 K and 1.8 × 105 A cm−2 by means of SQUID measurement, which indicate good superconducting properties. The inter-diffusion and dislocation incorporation mechanisms for the formation and growth of MgB2 nanoparticles are also proposed, and the further growth will be accelerated due to an adequate holding time at 994 K.  相似文献   

13.
Pure and Pr6O11-doped CaCu3Ti4O12 (CCTO) ceramics were prepared by conventional solid-state reaction method. The compositions and structures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of Pr-ion concentration on dielectric properties of CCTO were measured in the ranges of 60 Hz-3 MHz and 290-490 K. The third phase of Ca2CuO3 was observed from the XRD of CCTO ceramics. From SEM, the grain size was decreased obviously with high valence Pr-ion (mixing valence of Pr3+ and Pr4+) substituting Ca2+. The room temperature dielectric constant of Pr-doped CCTO ceramics, sintered at 1323 K, was an order of magnitude lower than the pure CCTO ceramics due to the grain size decreasing and Schottky potential increasing. The dielectric spectra of Pr-doped CCTO were flatter than that of pure CCTO. The loss tangent of Pr-doped CCTO ceramics was less than 0.20 in 2 × 102-105 Hz region below 440 K. The complex impedance spectra of pure and Pr-doped CCTOs were fitted by ZView. From low to high frequency, three semicircles were observed corresponding to three different conducting regions: electrode interface, grain boundary and grain. By fitting the resistors R and capacitors C, the activation energies of grain boundary and electrode contact were calculated. All doped CCTOs showed higher activation energies of grain boundary and electrode than those of pure CCTO ceramics, which were concordant with the decreasing of dielectric constant after Pr6O11 doping.  相似文献   

14.
High density nano-crystalline MgB2 bulk superconductors with induced pinning centres were prepared from elemental precursors by a sequence of ball milling, heat treatment, and final pressing. The XRD results revealed the main phase was MgB2 with a minor component of MgO. The magnetic moment versus temperature indicated that the transition temperature of MgB2 samples was around 34 K, which is less than the typical transition temperature of commercial powders and also the transition temperature strongly depended on the milling time. It is well known that introduction of defects, grain boundaries and impurities act as effective flux pinning centres in MgB2 and results in increased critical current density, Jc and decreased the transition temperature, Tc. The magnetization measurements were performed using VSM at 10 K, 20 K and 30 K, and the MH curves indicated a complete flux jump effect, which is a severe problem for the application of superconductors. It was determined that a noticeable amount of heating (0.3 K jumps at 10 K) occurs at these jumps. In addition, it was found that the sweeping rate of magnetic field and the size of bulk sample are very effective to promote the flux jumping and whereas a low sweeping rate (12 Oe/s) avoids these “avalanches”, consistent with a kind of supercritical phenomenon: going slower allows the field gradients to stay close enough to equilibrium so that the avalanche effect is not triggered. In contrast, the sweeping rate of 100 Oe/s leads to numerous jumps.  相似文献   

15.
Filamentary MgB2/Ti/Glidcop wire has been manufactured by in situ process using hydrostatic extrusion, cold drawing and finally subjected to high pressure and standard densifications. Filament density of as-deformed wires was evaluated by micro-hardness measurements and related to applied deformation. It was found that filament's density and uniformity in as-deformed wire have a strong effect on the critical current density (Jc) of annealed samples. The highest Jc was measured for the filaments densified by cold isostatic pressing with 2 GPa and also for rotary swaged ones showing the best uniformity. Presented results showed the importance of filament density and homogeneity and also demonstrate suitability of hydrostatic extrusion for uniform long-length filamentary MgB2 wires production.  相似文献   

16.
The effects of starting Mg particle size on the reactivity of Mg with B, and on remnant Mg in in situ MgB2, and their influence on the superconducting system are studied. Samples were prepared by a powder-in-sealed tube (PIST) method, heat treated at 850 °C for 2 h in air and were characterized using XRD, SEM and magnetization measurements. As the particle size of Mg powder increases, residual Mg increases significantly. The MgB2 prepared using smaller sized Mg powder does not have any residual Mg and show the best infield critical current density (JC (H)).  相似文献   

17.
Much research on MgB2 has been carried out because MgB2 has a higher transition temperature (Tc) of 39 K than that of other metallic superconductors and because the bulk form of MgB2 has exhibited high current density. In this study, Mg powder of less than 10 μm and B powder of less than 3 μm with equivalent MgB2 composition were mixed simply under argon atmosphere. In order to consider the effect of a pinning element on the superconducting properties, activated carbon of 5 at.% was added to mixed powders. The MgB2 bulk was fabricated with mixed powders in graphite molds at the various temperatures by spark plasma sintering. The formation of the MgB2 phase was confirmed with Differential Thermal Analysis (DTA) at 550 °C. The relative density of sintered MgB2 was 97 %, which increased as the sintering temperature increased. The sintering proceeded initially in the solid state and then by liquid phase sintering with increasing temperature without abnormal grain growth. In the Physical Property Measurement System (PPMS) result, the Tc was about 37 K in the carbon-added sintered sample. The 300 nm size MgB2 grains of hexagonal shape were formed after spark plasma sintering, but the MgB4 phase did not produce precise Tc.  相似文献   

18.
The glasses of the composition Li2O-ZrO2-SiO2: Pr2O3/Er2O3 mixed with three interesting sesquioxides (viz., Al2O3, Sc2O3, Y2O3) were synthesized. Optical absorption and fluorescence spectra (in the spectral range 350-2100 nm were studied at ambient temperature. The Judd-Ofelt theory was applied to characterize the absorption and luminescence spectra of Pr3+ and Er3+ ions in these glasses. Following the luminescence spectra, various radiative properties like transition probability A, branching ratio β and the radiative life time τ for different emission levels of two rare earth ions have been evaluated. The radiative life times for the upper levels 3P0 (Pr3+) and 4S3/2 (Er3+) have also been measured and quantum efficiencies were estimated. The variations observed in these parameters were discussed in the light of changing environment of rare earth ions due to mixing of different sesquioxides in the glass network.  相似文献   

19.
The samples with small amounts of MnO2 (0, 0.5, 1.0, 1.5, 2.0, and 2.5 wt%, respectively) were prepared via ball-milling process and two-step sintering process from commercial powders (i.e. Fe2O3, NiO and MnO2). Microstructural features, phase transformation, sintering behavior and magnetic properties of Mn-doped NiFe2O4 composite ceramics have been investigated by means of scanning electron microscopy (SEM), differential thermal analyzer, X-ray diffraction (XRD), thermal dilatometer and vibrating sample magnetometer (VSM) respectively. The XRD analysis and the result of differential thermal analysis indicate that the reduction of MnO2 into Mn2O3 and the following reduction of Mn2O3 into MnO existed in sintering process. No new phases are detected in the ceramic matrix, the crystalline structure of the ceramic matrix is still NiFe2O4 spinel structure. Morphology and the detecting result of thermal dilatometer show that MnO2 can promote the sintering process, the temperature for 1 wt% MnO2-doped samples to reach the maximum shrinkage rate is 59 °C lower than that of un-doped samples. For 1 wt% MnO2-doped samples, the value of the saturation magnetization (Ms) and coercivity (Hc) is 15.673 emu/g and 48.316 Oe respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号