首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用金属材料表面纳米化试验机对316L不锈钢进行了喷丸强化处理,采用激光共聚焦显微镜观察了不同喷丸条件下材料表面的三维形貌,测量了材料表面的粗糙度;采用洛氏硬度计测量了喷丸强化后材料表面的硬度;采用材料表面性能综合测试仪测试了材料的摩擦性能;采用扫描电子显微镜观察了磨痕的表面磨损形貌。结果表明:对于机械抛光表面,弹丸直径越大,喷丸强化后材料表面粗糙度和摩擦因数越小,硬度越大;喷丸时间增加到30min,振动频率增加到50Hz时材料表面粗糙度明显减小;弹丸直径越大,喷丸时间和振动频率对摩擦因数的影响越大;喷丸时间和振动频率越大,耐磨性越强,磨粒粒径越小且越均匀。  相似文献   

2.
采用金属材料表面纳米化试验机对316L不锈钢进行了喷丸强化处理,采用激光共聚焦显微镜观察了不同喷丸条件下材料表面的三维形貌,测量了材料表面的粗糙度;采用洛氏硬度计测量了喷丸强化后材料表面的硬度;采用材料表面性能综合测试仪测试了材料的摩擦性能;采用扫描电子显微镜观察了磨痕的表面磨损形貌。结果表明:对于机械抛光表面,弹丸直径越大,喷丸强化后材料表面粗糙度和摩擦因数越小,硬度越大;喷丸时间增加到30 min,振动频率增加到50 Hz时材料表面粗糙度明显减小;弹丸直径越大,喷丸时间和振动频率对摩擦因数的影响越大;喷丸时间和振动频率越大,耐磨性越强,磨粒粒径越小且越均匀。  相似文献   

3.
《铸造技术》2015,(10):2464-2466
采用机械喷丸技术对316L不锈钢实施了表面纳米化处理,研究了纳米化前后试样的摩擦磨损性能。结果表明,316L不锈钢经过表面纳米化后,表面产生的残余压应力最大可达-370 MPa,深度达0.8 mm。表面纳米化使得316L不锈钢表面显微硬度提高了近50%,表面摩擦系数明显降低,摩擦磨损质量损失为对比试样的10%,表明表面纳米化极大改善了316L不锈钢的摩擦磨损性能。  相似文献   

4.
目的研究磨料水射流-离子渗氮复合处理对316不锈钢摩擦学性能的影响。方法采用磨料水射流、离子氮化技术分别在316不锈钢表面进行喷丸(WJ-316SS)、渗氮(PN-316SS)、喷丸+渗氮(WJ-PN-316SS)表面强化处理,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、洛氏硬度计、粗糙度测试仪、超景深显微镜、划痕仪和摩擦磨损仪等研究复合处理试样的表面形貌、表层相结构与韧性,并讨论了不同表面处理试样的力学性能以及在干摩擦条件下的摩擦学行为。结果复合处理后的试样表面形成了连续密排的凹槽织构,表面改性层含有Fe_2N、Cr_2N、CrN等化合物,离子渗氮层厚度大约为10μm,表面显微硬度(79HRC)和表面粗糙度(1.10μm)高于单一表面处理试样。在与Si_3N_4摩擦配副进行干摩擦的实验中,316SS、WJ-316SS、PN-316SS的摩擦因数分别为0.8、0.4、0.5,磨损质量分别为7.1、3.3、3.7 mg。而WJ-PN-316SS的摩擦因数在0.25附近波动,磨损质量为0.3 mg,明显低于单一表面处理试样,耐磨性能更加优异,其磨损机理主要为疲劳磨损和氧化磨损。结论磨料水射流-离子渗氮复合处理能显著改善316不锈钢的摩擦学性能。  相似文献   

5.
为了改善钛的摩擦学性能,采用阳极氧化法在钛表面制备了纳米管径约100nm,厚度分别为500nm、1 000nm和1 500nm的TiO2纳米管层,并在450℃保温3h进行热处理。对试样的表面形貌、显微硬度和粗糙度进行测试。利用摩擦磨损试验考察了热处理前后不同试样在大气环境下的摩擦磨损行为。结果表明:干摩擦下,纳米管层的存在降低了钛与GCr15轴承钢球之间的摩擦系数;随TiO2纳米管层厚度的增加,试样的摩擦因数逐渐降低,磨损逐渐下降;热处理使纳米管由无定型氧化钛转变为锐钛矿晶型,进一步降低了摩擦因数,增加了钛的耐磨性能;纳米管层的磨损机制为磨粒磨损,接触疲劳磨损和粘着磨损。  相似文献   

6.
喷丸强度对316不锈钢表面完整性及疲劳寿命的影响   总被引:1,自引:0,他引:1  
周文龙  吕成  李烨  何声馨 《表面技术》2020,49(7):230-237
目的阐明喷丸强度对316不锈钢疲劳寿命的影响机制。方法不同喷丸强度处理的316不锈钢试样经化学腐蚀后,利用光学显微镜观察其微观结构的变化。采用白光干涉仪、维氏显微硬度测量系统、X射线应力分析仪等,分析喷丸处理前后316不锈钢试样的表面轮廓、表面粗糙度、显微硬度以及残余应力等的变化。利用疲劳试验机测得喷丸处理前后316不锈钢试样的拉伸性能和疲劳寿命。结果喷丸处理后,试样表面粗糙度明显增加,随着喷丸强度的增大,表面粗糙度S_a由0.04μm增至6.73μm。此外,喷丸处理后,产生了从表层到材料基体的微结构梯度,随着喷丸强度的变化,表面变形层的厚度位于110~290μm之间。喷丸过程中产生了加工硬化现象,并且引入了一定深度的残余压应力层。随着喷丸强度的增大,喷丸处理试样显微硬度的最大值由356HV_(0.1)增至435HV_(0.1),残余压应力的最大值由-633 MPa增至-750 MPa。与未喷丸试样相比,喷丸处理改善了材料的力学性能和疲劳特性,喷丸试样的塑性应变幅值降低,疲劳寿命明显增加。结论喷丸处理能够有效地改善316不锈钢的综合力学性能,增加其疲劳寿命。不同强度的喷丸处理效果差异明显,在喷丸强度为0.35 mmA时,达到最优喷丸效果。  相似文献   

7.
激光喷丸强化对Ti13Nb13Zr生物合金摩擦性能的影响   总被引:1,自引:0,他引:1  
对Ti13Nb13Zr合金进行激光喷丸强化处理,处理前后试样分别在3.5%的Na Cl溶液和Hank’s溶液中进行往复滑动摩擦试验,研究激光喷丸对Ti13Nb13Zr合金生物摩擦磨损性能的影响。通过磨损量和摩擦系数对材料的摩擦磨损性能进行了评价,利用光学显微镜、扫描电子显微镜对磨痕形貌和磨损机理进行了分析。结果表明:与未喷丸试样相比,喷丸处理后试样的磨损量显著降低,无论在3.5%的Na Cl溶液还是Hank’s溶液的润滑下,激光喷丸试样的摩擦系数普遍降低,且随着激光能量的增大而减小;未喷丸试样呈现典型的接触疲劳磨损和擦伤磨损机制,而喷丸处理后试样则主要呈现磨粒磨损和粘着磨损机制。  相似文献   

8.
目的 改善微弧氧化陶瓷膜层的摩擦学性能。方法 采用微弧氧化技术和抛磨技术相结合的方法在ZL109合金表面制备微弧氧化陶瓷和固体润滑剂复合膜层。利用粗糙度仪检测试样表面粗糙度,并在球盘往复式摩擦磨损试验机下检测复合膜层的摩擦学性能。使用扫描电镜(SEM)分析试验前后试样表面微观形貌及对磨钢球磨斑形貌,并利用能谱分析仪(EDS)对试样膜层化学成分进行分析。结果 在抛磨纳米WS2粉体过程中,WS2可有效填充陶瓷膜疏松层上的放电微孔以及经抛光的陶瓷膜层表面残留的微孔缺陷,并极大地降低试样表面粗糙度,进而影响实验前期的摩擦系数及抗粘着时间。试样MAO-W比试样MAO粗糙度降低约34.2%,摩擦系数降低79.2%,抗粘着时间增加900%。试样P-MAO-W比试样P-MAO粗糙度降低约41.3%,摩擦系数降低93.6%,抗粘着时间增加233%。另外,制备的试样可以有效减轻对磨钢球的磨损,并且试样的磨痕宽度及对磨钢球的磨斑直径变化规律与摩擦过程中的摩擦系数变化及粗糙度变化趋势相吻合。结论 在铝合金微弧氧化陶瓷膜层表面抛磨纳米WS2自润滑粉体可有效降低摩擦,延长抗粘着时间并减轻对磨件的磨损。  相似文献   

9.
针对316不锈钢表面承载能力低、耐磨性差等问题,采用磨料水射流对316不锈钢进行喷丸处理获得表面凹槽织构,再对表面织构316不锈钢进行了等离子渗氮二次处理,获得了表面织构-离子氮化表面复合改性层。利用SEM、EDS、超景深形貌系统和摩擦磨损仪分析了316不锈钢基体(316SS)、渗氮316不锈钢(PN-316SS)、织构化316不锈钢(ST-316SS)、织构-渗氮316不锈钢(ST-PN-316SS)在液体润滑条件下与Si3N4陶瓷球配副对磨的摩擦学行为。结果表明:在整个滑动过程中,4种试样表现出不同的磨损机理,从磨损量、摩擦因数以及磨损表面特点来看,ST-PN-316SS耐磨性优于其它单一表面改性试样的耐磨性,起到了降低磨损、连续提供润滑的作用,其磨损机理主要为轻微的塑性变形与氧化磨损。  相似文献   

10.
针对奥氏体不锈钢表面硬度低、摩擦因数大、耐磨性差等问题,对316不锈钢进行电化学处理获得表面织构,再对获得表面织构的试样进行离子氮化处理。在干摩擦和脂润滑条件下研究了316不锈钢基材和复合处理试样与GCr15钢球和Si3N4陶瓷球配副的摩擦学行为。结果表明:复合处理后试样表层主要由ε相、γ′相和CrN相组成,表面硬度为1 048HV0.1;在干摩擦条件下,表面织构未被完全破坏,在摩擦过程中起到了捕捉磨屑、降低磨损的作用;在脂润滑条件下,表面织构起到了储存油脂提供二次润滑源的作用。与两种摩擦配副在两种测试条件下,复合处理试样的磨损失重量均远低于316不锈钢基体。  相似文献   

11.
李安玲  王涛  何强 《机床与液压》2018,46(17):80-84
以316不锈钢为研究对象,采用火花直读光谱仪检测316不锈钢的基本成分,利用高温真空硬度计对316不锈钢不同温度下的维氏硬度进行测试与分析,采用金相显微镜对316不锈钢的组织结构进行分析。分别以GCr15钢、440C钢、316不锈钢、304不锈钢球为摩擦副,与316不锈钢圆盘在万能摩擦磨损试验机上进行球盘摩擦实验。结果表明:干摩擦条件下,316不锈钢的表面耐磨性能优于304不锈钢,弱于GCr15钢与440C钢。316不锈钢与GCr15钢的高温摩擦实验表明:316不锈钢的耐磨性能随摩擦温度的升高逐渐降低。温度的升高导致316钢组织变软,以致加剧试样与摩擦副之间的黏附黏着,导致严重磨损。  相似文献   

12.
目的提高选区激光熔化(SLM)成形316L不锈钢的耐磨性和硬度。方法在能量密度为50~110 J/mm~3、扫描间距为0.04~0.12 mm范围内,改变能量密度和扫描间距两种工艺参数,采用选择性激光熔化技术(SLM)制备了12种316L不锈钢试样。通过表面粗糙度测量、孔隙率测量、销盘摩擦试验和布氏硬度试验,研究了工艺参数对SLM成形316L不锈钢试样的摩擦磨损特性和硬度的影响。结果能量密度为90 J/mm~3且扫描间距为0.12 mm时,表面粗糙度Ra最小,为5700 nm。孔隙率范围为12.35%~0.94%,扫描间距为0.12 mm的试样的孔隙率比扫描间距为0.04 mm和0.08 mm的孔隙率小。扫描间距不变时,孔隙率随能量密度增大而减小。能量密度为50 J/mm~3时,扫描间距为0.12 mm的试样的摩擦系数和磨损率比扫描间距为0.04 mm和0.08 mm的要小;能量密度不变时,扫描间距为0.12 mm的试样硬度比扫描间距为0.04mm和0.08 mm的试样高。结论改变扫描间距和能量密度会直接影响成形试样的表面粗糙度、孔隙率。研究范围内,表面粗糙度和孔隙率随扫描间距增大而减小。孔隙率与磨损量及硬度存在相关性:孔隙率越小,硬度越大,磨损率越小。因此,合理选择工艺参数可以降低孔隙率,进而提高表面质量,降低磨损率,增大硬度。  相似文献   

13.
A nanocrystalline surface layer of about 25 μm thickness was fabricated on a quenched and tempered chrome-silicon alloy steel using Supersonic Fine Particles Bombardment (SFPB). The microstructural features in the treated surface layer were characterized using scanning electron microscopy and transmission electron microscopy observations. The grain size is about 16 nm in the top surface layer. Nanoindentation tests indicate the hardness of the top nanocrystalline layer is about 2 times of that of the matrix. The tribological behavior of the nanocrystalline surface layer was investigated under dry conditions. Experimental results show that the friction coefficients and wear volume loss of the surface nanocrystallized samples are lower than those of the untreated samples, and the wear resistance is remarkably improved. After surface nanocrystallization, there occurs a transition of dominant wear mechanics from the combined action of abrasive wear and adhesive wear to the abrasive wear. The advantages realized in the friction and wear properties of the SFPB treated sample may be attributed to the duo enhancement of the hardness and the surface activity caused by the grain refinement, which, in turn, result in the improvements in forming oxide layer and resistance to plastic removal.  相似文献   

14.
电弧离子镀制备的Al Cr N涂层表面存在大量的"大颗粒",导致其具有较高的表面粗糙度,进而降低了涂层的摩擦磨损和切削性能。采用不同后处理方法(如离子刻蚀、湿喷砂、干喷砂和微粒子喷丸)对电弧镀Al Cr N涂层表面进行处理,利用XRD、SEM、OM、摩擦磨损以及切削试验分析不同后处理方式对涂层组织结构、表面形貌、表面粗糙度、摩擦磨损以及切削性能的影响。结果显示:不同后处理方法均可有效清除Al Cr N涂层表面颗粒,其中湿喷砂、微粒子喷丸和干喷砂对涂层表面颗粒数目去除效果较好,"大颗粒"分别降低了91.1%、88.5%和86.9%,离子刻蚀后处理次之,颗粒数目降低了21.0%。经处理的Al Cr N涂层的XRD图谱与未处理的涂层相比没有明显变化,均为固溶(Al,Cr) N相,但其衍射峰均向低角度偏移。经过后处理涂层的摩擦因数相比于未处理的涂层均有不同程度降低,涂层磨损方式为磨粒磨损并伴有少量的氧化磨损。Al Cr N涂层刀具经过后处理工艺处理后,切削寿命均有不同程度提高,与未处理涂层刀具相比较经微粒子喷丸、干喷砂、离子刻、湿喷砂后处理的涂层刀具切削寿命分别提高了30%、40%、40%和60%。  相似文献   

15.
不锈钢与GFER及CFRPEEK在海水润滑下的摩擦磨损特性   总被引:3,自引:1,他引:2       下载免费PDF全文
为了寻找适合于低速大扭矩海水液压马达的各摩擦副之间的配对材料,分别以不锈钢(316L和9Cr18Mo)与玻纤环氧复合材料(GFER)及碳纤维增强聚醚醚酮(CFRPEEK)为摩擦副,利用MMU-5G屏显式高温材料端面摩擦磨损试验机对摩擦副在海水中接触表面的温度、摩擦因数和摩擦磨损状况进行了测试,并通过激光共聚焦显微镜对接触表面的磨损形貌进行分析。结果表明:不锈钢/GFER的摩擦因数随着时间的变化在0.3~0.4间波动且幅度较大,而不锈钢/CFRPEEK的摩擦因数随着时间的增加稳定在0.1左右;不锈钢/GFER所引起海水温升的幅度也远远高于不锈钢/CFRPEEK;不锈钢/GFER的接触表面出现了大面积的涂抹与擦伤,且磨损程度要大于不锈钢/CFRPEEK;不锈钢316L的耐腐蚀性优于9Cr18Mo。由此可知,316L/CFRPEEK较适合作为低速大扭矩海水液压马达的摩擦副材料。  相似文献   

16.
通过对未表面纳米化、表面机械研磨处理(SMAT)法表面纳米化和表面纳米化后退火处理的316L不锈钢性能变化的研究,试图获得一种可以提高该材料表面硬度和抗点蚀性能的方法。采用点蚀实验和硬度实验方法,并在3.5%NaCl水溶液中测量了不同样品的极化曲线。结果表明,316L不锈钢表面纳米化后抗点蚀性能下降;表面纳米化后经退火处理的316L不锈钢随退火温度升高和退火时间延长抗点蚀性能会重新恢复。316L不锈钢经SMAT法表面纳米化加适当退火,可以获得较高硬度和较高抗点蚀性能的表面层。  相似文献   

17.
刘秀芳  李霞  张广安  眭剑 《表面技术》2019,48(5):194-200
目的考察非晶碳膜(amorphous carbon film,a-C)在干摩擦和在离子液体(IL)润滑下的载流摩擦磨损行为特点。方法选取不锈钢、涂覆离子液体的不锈钢、a-C薄膜和涂覆离子液体的a-C薄膜(a-C-IL)分别与不锈钢小球对磨,在直流电流为0.2 A的条件下进行摩擦磨损测试,对比了各种试样的摩擦学行为。通过扫描电镜、表面三维轮廓仪和拉曼光谱对磨痕和磨斑进行分析表征,并讨论各种摩擦副的磨损机制。结果非晶碳膜与离子液体均能有效地降低钢-钢摩擦副在载流条件下的摩擦系数,使得稳定摩擦系数从~0.8分别降低到~0.2和~0.15。当a-C膜与IL进行复合后,进一步降低了a-C膜的载流摩擦系数(~0.1),但是a-C膜的耐磨性能降低。结论在载流摩擦磨损测试下,钢-钢摩擦副的摩擦系数大,磨损严重,伴随轻微的粘着磨损;离子液体可以明显减小摩擦副之间的粘着,降低钢-钢摩擦副的摩擦系数和磨损率。在钢基底上镀a-C薄膜,摩擦过程中a-C磨屑形成的转移膜发生了石墨化,能显著降低摩擦系数,减小磨损率。a-C-IL固液复合薄膜具有比a-C膜更低的载流摩擦系数,但其耐磨性能不如a-C膜。  相似文献   

18.
邵若男 《热处理》2022,(1):12-17,23
为研究织构及其形状对G95Cr18不锈钢与自润滑衬垫摩擦副摩擦磨损特性的影响,采用紫外皮秒激光器在G95Cr18不锈钢销表面制备了不同形状的织构.采用扫描电子显微镜、3D共聚焦显微镜和接触角检测仪观察了织构形状和表面润湿角的变化,采用旋转式销盘接触摩擦磨损试验机检测了 G95Cr18不锈钢-自润滑衬垫摩擦副的摩擦磨损特...  相似文献   

19.
为替代磷化-皂化处理工艺,通过浸涂高分子复合润滑液的方法在低碳钢试样表面制备涂层。利用HT-500型球盘摩擦试验机考察了低碳钢在高分子复合润滑涂层、磷皂化膜、无润滑介质这3种不同润滑条件下摩擦学性能,同时分析了干摩擦接触表面上摩擦切应力,并应用VHX-600K型超景深显微镜对磨损表面形貌观察,探讨磨损机制。结果表明:高分子复合润滑涂层与磷皂化膜具有相接近的润滑减摩特性,摩擦因数与干摩擦相比分别减小67.33%和68.79%,对摩初期5 min内前者略低2.1%,且减摩性能都较稳定。此外,磨损机制与不同润滑条件下的摩擦行为有关。干摩擦过程中,磨粒磨损、氧化磨损起主导作用;表面有磷皂化膜的摩擦磨损机制主要为轻微磨粒磨损与少量氧化磨损;高分子复合润滑涂层作用下,表面磨损程度最小,主要表现为轻微磨粒磨损。  相似文献   

20.
目的探讨镍基金属陶瓷涂层在海水中的耐腐蚀磨损性能。方法采用激光熔覆技术在45钢表面制备了1.1 mm厚的镍基金属陶瓷涂层。采用电化学测试系统,对比分析了涂层的耐蚀性。采用往复式摩擦磨损试验机,测量了涂层在干摩擦及海水环境下的摩擦系数。采用扫描电镜等手段分析了涂层和磨痕的表面形貌。结果镍基金属陶瓷涂层的表面硬度约为基体的3倍,且硬度较均匀。在结合区开始,硬度剧烈下降,直至降为基体硬度。在3.5%Na Cl溶液中,镍基金属陶瓷涂层的腐蚀倾向低于316L不锈钢及316L堆焊层,而腐蚀速率介于两者之间。干摩擦条件下,镍基金属陶瓷涂层明显降低了基体的摩擦系数(从0.58降低至0.49)和磨损量(降低了50%)。与干摩擦实验相比,人工海水明显降低了镍基金属陶瓷涂层的摩擦系数(从0.49降低至0.37)和磨损量(降低了40%)。结论由于具有良好的耐蚀性和较高的硬度,镍基金属陶瓷涂层在人工海水中表现出了良好的耐磨耐蚀性能。磨损过程中,人工海水的冷却、润滑作用和其中盐类的隔离作用,有效改善了摩擦界面的接触状态,提高了镍基金属陶瓷涂层的耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号