首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 406 毫秒
1.
为了满足蓝宝石晶片高效低损伤的加工要求,采用亲水性固结磨料研磨垫研磨蓝宝石晶片的工艺,研究基体中碳化硅粒度尺寸、基体类型、金刚石粒度尺寸及研磨液中磨料4个因素对材料去除率和表面粗糙度的影响,并综合优化获得高加工效率和优表面质量的工艺参数。实验结果表明:基体中碳化硅粒度尺寸为10 μm、基体类型为Ⅱ、研磨垫采用F公司粒度尺寸为35~45 μm的金刚石、研磨液中磨料的粒度尺寸为5 μm的碳化硅为最优工艺组合,亲水性固结磨料研磨蓝宝石的材料去除率为431.2 nm/min,表面粗糙度值为Ra 0.140 2 μm。   相似文献   

2.
氧化锆陶瓷背板的高效低损伤研磨加工是其在5G通讯应用中的前提。针对氧化锆材料的硬脆特性造成磨粒磨损严重的特点,以金刚石单晶和聚集体为磨料,制备固结磨料垫(FAP),并对比研究其加工性能,探索了研磨液中碳化硅磨粒在固结磨料研磨垫自修整过程中的作用机理。结果表明:采用金刚石聚集体作为固结磨料垫的磨料,辅以碳化硅砂浆,能够明显提高研磨速度,改善表面加工质量。采用粒度230/270的金刚石聚集体固结磨料研磨垫,辅以颗粒尺寸3~5 μm的绿碳化硅砂浆,氧化锆陶瓷研磨时材料去除率达2.5 μm/min以上,表面粗糙度值Ra为74.9 nm。   相似文献   

3.
熔融石英玻璃衬底的研磨加工是其超光滑抛光加工的基础工序。采用游离磨料对熔融石英玻璃进行单面粗研和精研加工,研究磨料质量分数、研磨盘转速、研磨液流量和研磨时间对石英玻璃表面质量和材料去除率的影响。结果表明:粗研过程中,随着磨料质量分数、研磨盘转速、研磨液流量的增大,工件材料去除率先增大后减小;随着加工时间的延长,表面粗糙度Ra逐渐达到稳定水平。在磨料质量分数4%、研磨液流量20 mL/min、研磨盘转速60 r/min、加工30 min时,熔融石英玻璃衬底的表面粗糙度Ra达 0.11 μm。在熔融石英玻璃衬底的精研过程中,选用平均粒径3 μm的CeO2加工50 min后的表面粗糙度Ra最低,为4.11 nm。   相似文献   

4.
氟化钙晶体的高效精密研磨加工是实现其超精密抛光加工的前提。采用单晶金刚石和聚集体金刚石磨料制备固结磨料垫(FAP),对比研究其研磨加工性能,探索不同种类的金刚石磨粒在固结磨料研磨垫自修整过程中的作用机理。结果表明:采用聚集体金刚石磨料制成的FAP研磨效率明显高于单晶金刚石FAP的,且其材料去除率更稳定,同时聚集体金刚石FAP的自修整能力要优于单晶金刚石FAP的。在10 kPa压力下,采用初始粒径为3~5 μm的聚集体金刚石FAP研磨氟化钙晶体,其材料去除率达13.0 μm/min, 表面粗糙度值Ra为130.0 nm。   相似文献   

5.
研磨温度的升高会引起树脂基体模量的变化,从而影响亲水性固结磨料垫的加工性能。通过有限元分析软件仿真了亲水性固结磨料垫在不同研磨液温度下研磨石英玻璃的瞬态温度场,研究了不同温度条件下固结磨料垫基体的溶胀率与砂浆磨损量,探索了固结磨料垫在不同研磨液温度下的加工性能。结果表明:随着研磨液温度的升高,基体温度分布区间也随之改变,固结磨料垫基体的溶胀率与砂浆磨损量均增加,分别达到了1.43%与2.5 mg;温度升高使基体动态模量减小,材料去除率(material removal rate,MRR)和表面粗糙度Ra得到了改善,分别为8.2 μm/min和69.9 nm。因此适当提升研磨温度,能在一定程度上提高固结磨料垫的加工性能。   相似文献   

6.
金刚石固结磨料垫研磨蓝宝石晶片时,因磨屑细小导致研磨垫自修整能力严重不足,制约了其工业应用。本实验尝试用向研磨液中添加碳化硅颗粒的办法,辅助磨屑改善研磨垫的自修整能力。分别制备了不含磨料和含金刚石磨料(粒度尺寸为20~30 μm)的研磨垫,比较其在不同研磨条件下的材料去除率和研磨后工件表面形貌,探索研磨液中碳化硅颗粒的作用机制。结果表明:研磨液中添加的碳化硅颗粒加快了研磨垫基体的磨损,有利于亚表层金刚石颗粒的出露,实现了研磨垫的自修整过程,材料去除速率明显提高,提高近14倍。   相似文献   

7.
TC4钛合金是典型的难加工材料,在传统加工中存在难切削、工件表面易烧伤等问题。采用自行设计的球形固结磨料磨头开展TC4钛合金研磨实验,探索不同粒径、磨料种类及研磨工艺参数对TC4钛合金研磨材料去除率及表面质量的影响,分析研磨的材料去除机理,优化研磨工艺。发现20~30 μm碳化硅磨粒的研磨效果最佳,优化后的工艺方案为磨头转速2000 r/min,研磨夹角30°,研磨时间10 s。在此工艺参数下研磨材料去除率为22.2 mg/min,工件表面粗糙度Ra值为0.7 μm,兼顾了对材料去除效率和表面质量的要求。   相似文献   

8.
为提高蓝宝石基片的研磨效率和质量,研制2种不同硬度的陶瓷结合剂固结金刚石研磨丸片并制作了相应的研磨盘,对蓝宝石基片进行研磨工艺试验以评估其研磨性能。结果表明:研磨时间延长,蓝宝石的材料去除率(RMRR)和表面粗糙度(Ra)均逐渐降低最后趋于稳定;研磨盘转速提高,2种研磨盘获得的工件材料去除率均先升高后降低,在研磨盘转速为60 r/min时达到最高,分别为1.81 μm/min和1.27 μm/min,但工件表面粗糙度则持续降低;研磨压力增大,2种研磨盘获得的工件材料去除率持续升高,在研磨压力为34.5 kPa时达到最高,分别为2.03 μm/min和1.49 μm/min,且此时的蓝宝石基片表面粗糙度最低分别为0.165 μm和0.141 μm。对比2种硬度的研磨盘磨损性能可以发现,研磨盘的硬度越高,其材料去除效率越高,研磨盘磨耗比越高,但研磨后的工件表面粗糙度相对较高。   相似文献   

9.
石英玻璃的研磨加工是其超光滑抛光加工的前道工序,对其加工效率和最终表面质量影响甚大。针对石英玻璃的硬脆特性,采用固结金刚石聚集体磨料研磨垫,对其高效低损伤研磨加工工艺进行了研究。探索了金刚石聚集体磨粒的一次颗粒尺寸、二次颗粒尺寸、研磨压力和研磨液流量4因素对研磨石英玻璃加工性能的影响,综合优化得到加工效率高和表面质量优的工艺参数。实验表明:采用固结金刚石聚集体磨料研磨垫,当一次颗粒尺寸和二次颗粒尺寸分别为1.0~2.0 μm和20~25 μm,研磨压力为14 kPa,研磨液流量为60 mL/min时,材料去除率达到2.64 μm/min,平均表面粗糙度值Ra为54.2 nm。   相似文献   

10.
采用铜基螺旋槽研磨盘对6H-SiC单晶基片的Si面和C面进行了单面研磨加工,研究研磨压力、研磨盘转速和金刚石磨粒尺寸对SiC基片材料去除率和表面粗糙度的影响。结果表明,单晶SiC的C面和Si面具有明显的差异性,C面更易加工,其材料去除率比Si面大。研磨压力是影响材料去除率和表面粗糙度的主要原因,研磨压力越大,材料去除率越高,但同时表面粗糙度变大,较大的研磨压力会导致划痕的产生。在达到最佳表面粗糙度时,C面加工所需的转速比Si面大。磨粒团聚会严重影响加工表面质量,采用粒度尺寸3 μm的金刚石磨料比采用粒度尺寸1 μm的金刚石效果好,经粒度尺寸3 μm的金刚石磨料研磨加工5 min后,Si面从原始粗糙度Ra 130 nm下降到Ra 5.20 nm,C面下降到Ra 5.49 nm,表面质量较好。   相似文献   

11.
针对圆柱滚子高精密研磨加工过程中效率低下的问题,在双平面偏心盘式圆柱滚子抛光方法基础上,提出基于金刚石固结磨料磨具的圆柱滚子研磨方法。自制金刚石丸片,用上下盘黏附的金刚石丸片对圆柱滚子进行超精密研磨加工,研究丸片中不同金刚石微粉粒度代号、砂结比及研磨液黏度对圆柱滚子表面粗糙度、材料去除率、平均圆度误差及批直径变动量的影响。结果表明:圆柱滚子的材料去除率和表面粗糙度均随金刚石微粉粒度代号增大而增大;金刚石丸片的砂结比太大或太小都会导致圆柱滚子材料去除率下降,进而影响其表面粗糙度;合适的研磨液黏度,可以改善研磨时的润滑性能,防止大颗粒磨粒划伤工件表面。当金刚石微粉粒度代号为M2/4,丸片砂结比为1.6,研磨液黏度为5.380 mPa·s时,圆柱滚子的材料去除率达1.70 μm/min,表面粗糙度Ra从0.081 μm下降到0.025 μm,平均圆度误差从1.085 μm下降为0.553 μm,批直径变动量RDWL从6 μm 下降为2 μm,圆柱滚子研磨效率和精度显著提高。   相似文献   

12.
利用固结式微复制金刚石研磨片(Trizact Diamond Tile,TDT)对不同玻璃进行减薄研磨,确定不同粒度金刚石TDT的磨削去除率;研究了研磨后的玻璃加工质量,测量了玻璃表面粗糙度及玻璃亚表面损伤层的状态。同时用9μm粒度碳化硅浆料做对比研磨试验。结果表明,同样粒度的金刚石TDT与传统的碳化硅浆料研磨相比可以得到更高的磨削去除率,减少玻璃亚表面损伤层,降低粗糙度。对于康宁玻璃,9μm粒度的TDT可以达到95μm/min的磨削去除率,是同粒度碳化硅浆料研磨的2倍多;Ra可以达到0.37μm,明显好于碳化硅浆料研磨;亚表面损伤也减轻很多。采用2μm粒度的TDT研磨后可获得Ra0.09μm、接近透明的表面。  相似文献   

13.
探究研抛工艺参数对工件材料去除率和表面粗糙度的影响。以砂纸和金刚石喷雾抛光剂为研抛介质,通过正交试验研究砂纸细度、研抛压力、研抛速度、研抛时间对18CrNiMo7-6工件材料去除率和表面粗糙度的影响。采用三维形貌仪、千分尺、电子天平和超景深显微镜对18CrNiMo7-6工件的表面粗糙度、厚度、质量和表面形貌进行测量分析,以材料去除率和表面粗糙度为评价指标,得到最佳的研抛工艺参数组合。在最佳工艺参数组合下,砂纸研磨工件的材料去除率为0.86μm/min,表面粗糙度为Ra0.048μm,金刚石抛光剂抛光后工件表面粗糙度为Ra0.024μm。砂纸研磨最佳工艺参数为:砂纸细度800#,研磨压力0.2MPa,研磨速度30rpm,研磨时间30min。抛光最佳工艺参数为:抛光压力0.2MPa,抛光速度30rpm,抛光时间15min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号