首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用离子轰击去除不锈钢表面钝化膜并活化表面,然后在不同的渗碳温度条件下,用氢气和乙炔混合气体对AISI 316L奥氏体不锈钢进行硬化处理,研究了渗碳温度对不锈钢渗碳层组织和性能的影响。结果表明:AISI 316L奥氏体不锈钢低温离子-乙炔气体渗碳的临界温度为540℃。在440~540℃温度范围内,渗碳层中具有单一γc相结构,无铬的碳化物析出,硬化层厚度与硬度均随渗碳温度的升高而增加。当渗碳温度超过540℃,渗碳层中不仅含有γc相,而且会有新相生成(如Cr23C6、Cr7C3、Cr C、Fe3C、Fe2C),从而引起不锈钢耐蚀性能降低。  相似文献   

2.
采用离子轰击去除不锈钢表面的钝化膜,并活化试样的表面,然后再进行低温气体渗碳处理。经过反复几次循环处理后,实现AISI 316L奥氏体不锈钢表面低温硬化处理。利用显微硬度计测试表面硬度、硬度梯度;用光学显微镜观察硬化层横截面的显微组织。结果表明,在渗碳温度为440~590 ℃内,硬化层的表面硬度及厚度与渗碳温度和循环处理周期成正比。温度在440~510 ℃内,硬化层增厚相对比较缓慢;当渗碳温度超过510 ℃后,硬化层的厚度增速加快。在440~530 ℃之间,硬化层表面硬度基本保持不变,在530 ℃之后,硬化层的表面硬度继续增加。在3~7个循环处理周期内,硬化层厚度增长速度较快,在第7个循环处理周期后,硬化层厚度增长速度变慢。不降低耐蚀性能的奥氏体不锈钢低温渗碳硬化处理的临界温度为530 ℃。  相似文献   

3.
奥氏体不锈钢低温离子渗碳处理是一种能在不降低耐蚀性能的前提下显著提高其表面硬度的有效方法。本文研究了奥氏体不锈钢低温离子渗碳气体比例及炉内压强对渗碳层硬度及厚度的影响。试验结果表明,炉内气体比例及压强对渗碳层硬度及厚度都有较大的影响。当氢气与甲烷比例为(20~30):1、气体压强为400 Pa时,渗碳层的硬度最高,硬化层最厚。  相似文献   

4.
奥氏体不锈钢渗碳层的组织及耐蚀强化性能研究   总被引:3,自引:3,他引:0  
针对常规渗碳工艺会削弱奥氏体不锈钢耐蚀性的问题,通过对现有气体渗碳技术进行改进,采用前处理活化、降低渗碳温度的方法,实现了奥氏体不锈钢渗碳兼顾表面强度与耐蚀性能的目标。采用该工艺对AISI304和AISI316奥氏体不锈钢进行渗碳处理,并分析渗层组织和性能,结果表明,在470℃条件下,AISI316不锈钢经气体渗碳处理后,渗碳层具有优异的耐蚀强化性能。  相似文献   

5.
离子渗碳温度对316L不锈钢渗层组织和性能的影响   总被引:1,自引:0,他引:1  
利用低温离子渗碳技术.在不同温度下对AISI 316L奥氏体不锈钢进行渗碳处理.利用光学显微镜、显微硬度计、XRD以及电化学测试技术研究了渗碳温度对不锈钢表面显微组织和性能的影响.结果表明,渗碳温度显著影响AISI 316L奥氏体不锈钢渗碳层的组织结构与性能.渗碳温度在400~550℃之间时,可以获得无碳化物析出的、具有单一γ_c相结构的渗碳层;渗碳温度在550℃时,渗碳层为γ相+Cr_(23)C_6+Cr_7C_3+Fe_3C+Fe_2C的混合组织.渗碳层的厚度与硬度均随渗碳温度的升高而增加.550℃是AISI 316L奥氏体不锈钢中铬的碳化物析出的临界温度.为了避免铬的碳化物析出而降低不锈钢的耐蚀性能.奥氏体不锈钢渗碳必须在低于550℃的渗碳温度下进行.  相似文献   

6.
AISI316L不锈钢低温盐浴硬化处理   总被引:1,自引:1,他引:0  
利用低温520℃盐浴硬化处理技术对AISI 316L奥氏体不锈钢进行了表面硬化处理,并对硬化层的组织和性能进行研究.试验结果表明,316L奥氏体不锈钢在520℃下处理3 h,即可获得具有S相结构特征的高耐蚀硬化层;在520℃以上盐浴硬化处理时,硬化层将会有铬的碳化物和氮化物析出,将会降低硬化处理后不锈钢表面的耐蚀性能.  相似文献   

7.
渗碳对AISI 316不锈钢表面性能影响的研究   总被引:1,自引:0,他引:1  
用低温渗碳技术对AISI 316不锈钢进行表面硬化处理,利用光学显微镜、显微硬度计、XRD以及电化学测试技术研究了渗碳对不锈钢表面显微组织和性能的影响。结果表明,通过渗碳处理可以在AISI 316不锈钢表面获得单相碳过饱和固溶体,不仅表面硬度得到显著提高,而且表面耐蚀性能也有所改善。  相似文献   

8.
采用自主研发的低温气体渗碳技术对AISI316奥氏体不锈钢进行处理,目的是增强耐磨性且不损害其耐蚀性。对低温气体渗碳层显微组织、硬度梯度、耐蚀性和耐磨性进行分析。结果表明:低温气体渗碳层硬度梯度变化与其组织和碳浓度有一定关系,随渗碳层深度的不同表现出不同的组织和性能。低温气体渗碳处理前后AISI316奥氏体不锈钢的磨损机制由粘着磨损转变成磨粒磨损,S相是提高耐磨性的主要因素,470℃时表现出较好的耐磨性,其耐蚀性基本保持不变。  相似文献   

9.
AISI 304奥氏体不锈钢低温离子渗碳工艺优化研究   总被引:1,自引:0,他引:1  
用正交实验法研究了AISI 304奥氏体不锈钢低温离子渗碳工艺。结果表明,优化后的奥氏体不锈钢低温离子渗碳工艺参数为渗碳温度500℃、C3H8:H2=1:30、氩气流量20 ml/min、渗碳时间6 h。用优化工艺参数处理的奥氏体不锈钢表面可获得单一的Sc相组织,硬度高达780 HV0.05。  相似文献   

10.
低温盐浴渗碳、等离子渗碳等低温渗碳工艺在提高奥氏体不锈钢表面强度的同时,会降低其耐蚀性能。为克服上述缺陷,开发了一种高效兼顾表面强度与耐蚀性能的表面强化工艺的低温气体渗碳技术。采用该工艺对304、316奥氏体不锈钢进行渗碳处理,并对得到的奥氏体不锈钢低温渗碳组织性能进行分析。结果表明,随着温度升高,试样表面强度提高,而腐蚀性能下降。470℃是兼顾强化与耐蚀性能的低温气体渗碳工艺参数。  相似文献   

11.
采用真空低压渗碳技术对304和316L奥氏体不锈钢进行表面强化,利用光学显微镜、扫描电镜、Thermo-Calc热力学软件、X射线衍射仪和显微硬度计等对渗碳层显微组织、相组成及硬度分布进行分析表征,计算了奥氏体不锈钢渗碳层中不同衍射峰的偏移量及渗碳前后晶格常数的变化量。结合钼对奥氏体不锈钢渗碳过程的影响,对比研究了304和316L奥氏体不锈钢渗碳后,在渗碳层深度、表面硬度及碳化物的析出规律等方面的差异。结果表明,经750 ℃真空渗碳2.6 h后,304和316L奥氏体不锈钢晶格常数分别增加了1.33%和1.14%,形成了由膨胀奥氏体和Cr23C6组成的渗碳层,Cr23C6在渗碳层中主要以条状沿膨胀奥氏体晶界析出,表面硬度较基体硬度均提升了两倍以上。  相似文献   

12.
奥氏体不锈钢的低温离子氮碳共渗研究   总被引:7,自引:1,他引:7  
利用低压等离子体辉光放电技术对AISI 316奥氏体不锈钢进行低温离子氮碳共渗硬化处理,处理是在不降低奥氏体不锈钢耐蚀性能的前提下进行的。处理后的奥氏体不锈钢属于一种无氮化铬或碳化铬析出的氮和碳的过饱和固溶体(S相结构)。这种渗入钢中的过饱和氮和碳元素引起奥氏体晶格发生畸变,使渗层的硬度和耐磨性都有较大幅度的提高。由于处理后的奥氏体不锈钢渗层内的最大含氮量和最大含碳量分别出现在不同的深度,因而使离子氮碳共渗处理后的奥氏体不锈钢既有离子渗氮处理的高硬度,又有离子渗碳处理后的高的渗层厚度和良好的硬度梯度等特点。  相似文献   

13.
AISI 201奥氏体不锈钢低温离子渗碳   总被引:2,自引:0,他引:2  
赵程  王宇 《金属热处理》2012,37(5):95-97
利用低温等离子体辉光放电技术对AISI 201奥氏体不锈钢进行低温离子渗碳(DCPC)处理,处理后的不锈钢表面可以形成一层无碳化铬析出的碳的过饱和固溶体(SC相)。由于渗入钢中的过饱和碳原子引起奥氏体晶格发生畸变,结果使渗层的硬度和耐蚀性都有较大幅度的提高。  相似文献   

14.
奥氏体不锈钢通过等离子氮碳共渗可显著提高其表面硬度,从而提高耐磨性而又不损害其抗腐蚀性能。本文采用光学显微镜、显微硬度和微磨损试验对经于450℃等离子氮碳共渗的AISI316L不锈钢和所获得的渗层进行了表征。结果证明,等离子氮碳共渗层由氮化铬析出相和富氮奥氏体基体组成,其硬度约850HV;渗层总深度平均约为45μm,且很均匀;渗层的耐磨性大大高于基体。  相似文献   

15.
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.  相似文献   

16.
用正交实验法研究了AISI304奥氏体不锈钢低温离子渗碳工艺。结果表明,优化后的奥氏体不锈钢低温离子渗碳工艺参数为渗碳温度500℃、C3H8:H2=1:30、氩气流量20ml/min、渗碳时间6h。用优化工艺参数处理的奥氏体不锈钢表面可获得单一的Sc相组织,硬度高达780HV0.05。  相似文献   

17.
采用金相、扫描电镜、电化学工作站等分析手段研究了在普通离子氮化炉引入铬、镍离子源,对奥氏体不锈钢进行铬、镍、氮多元离子淹没轰击处理后材料的表面形貌、成分和耐蚀性能等。结果表明:经铬、镍、氮多元离子淹没轰击处理后的奥氏体不锈钢表面形成强化层,表面硬度Hv达到12.7 GPa;该强化层的铬、氮的含量很高,主要由CrN和Fe4N相组成;其耐腐蚀性能与普通离子氮化相比得到明显改善.  相似文献   

18.
目的提高316L不锈钢的硬度、耐磨性。方法在400℃、2 Pa下,利用空心阴极直流弧辅助,进行了316L奥氏体不锈钢离子渗氮(PN)、离子氮碳共渗(PNC)及离子氮碳共渗加离子渗氮复合(PNC+PN)处理。针对处理后的样品,用莱卡显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、维氏硬度仪、3D形貌仪、球盘式摩擦磨损仪及电化学工作站等对组织、形貌、物相、机械性能及耐蚀性能进行表征。采用显微硬度计、微纳米综合力学系统测试分析处理后样品的力学性能。结果在空心阴极直流弧辅助下,三种工艺可获得超过3 mm/h的渗层生长速度。同316L不锈钢基体相比,PNC+PN复合处理样品的表面硬度提高3倍以上,在3.5%Na Cl中性电解质中的耐蚀电流密度降低约50%。结论 PNC处理和PNC+PN复合处理可获得更大的渗层厚度和更高的表面硬度,渗层中C、N含量越高,渗层组成相的晶格参数越大,渗层中产生的滑移带密度越大。低温低压等离子弧辅助离子渗不仅能有效提高316L不锈钢的表面硬度,还能提高不锈钢的耐蚀能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号