首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本研究通过7B50合金改进型Jominy样品表面喷水淬火实验,在获得实测冷却曲线、不同时效状态合金的电导率和硬度的基础上,结合自然时效状态合金的微观组织,对7B50合金的淬透性及其临界平均冷却速率展开研究。结果表明:7B50合金自然时效50 d的淬透深度为70 mm,对应淬火敏感温度区间(420~230℃)内的平均冷却速率为1.55℃×s~(-1);先自然时效50 d再人工峰时效合金的淬透深度减至60 mm,对应的平均冷却速率为1.95℃×s~(-1);与自然时效状态相比,先自然时效再人工峰时效处理后合金的淬透性变差,淬火敏感性增加。表面喷水淬火时,非均匀析出相首先在晶界/亚晶界上析出,然后在基体内的Al_3Zr粒子上析出;晶界/亚晶界上观察到析出相,出现在距淬火表面仅3mm处,对应淬火敏感温度区间内的平均冷却速率高达981℃×s~(-1);基体内零星析出尺寸较小的非均匀析出相,出现在距淬火表面10mm处,对应的平均冷却速率为37.75℃×s~(-1)。喷水淬火后,距淬火表面25 mm处的性能与淬火表面处相比变化不大,该位置对应的平均冷却速率为9.34℃×s~(-1),远小于淬火表面处,控制7B50合金厚板的喷水淬火过程,使厚板内部的平均冷却速率接近但不低于9.34℃×s~(-1),厚板淬火-时效后将获得较好的性能。  相似文献   

2.
通过淬火试验获得了6063铝合金的在线淬火冷却曲线,结合数值方法获得该合金的在线淬火换热系数,运用ABAQUS有限元软件动态模拟了其在线淬火过程.结果表明:喷水淬火初始阶段,换热系数较小,随着淬火温度降低,换热系数逐渐增大至峰值约47 kW/(m2·℃),随后又逐渐减小;有限元模拟获得的冷却曲线与实测冷却曲线基本吻合;淬火时试样的温度分布符合一维传热特征,轴向应力呈“内压外拉”状态,且无论是拉应力还是压应力都在淬火开始不久后出现峰值.  相似文献   

3.
为了控制高强薄钢板喷水冷却过程的畸变,提高有限元模拟的精确度,设计了一套喷水淬火冷却试验装置,用于测量淬火时钢板温度随时间的变化曲线。使用DEFORM软件中的Inverse Heat Transfer反传热模块求解出高强薄钢板在喷水压力分别为0.05、0.1、0.2和0.3 MPa时钢板表面综合换热系数。试验结果表明,喷水冷却能提高水的对流换热,从而显著提高水在400℃以上高温段的冷却能力,对水在低温段的冷却能力没有明显提高。  相似文献   

4.
通过6061铝合金末端淬火测得的冷却曲线,结合有限差分法和反传热求解法,研究了6061合金固溶处理在不同冷却方式下的冷速及表面换热系数与温度的变化规律。结果表明,6061铝合金在水雾冷和喷水冷却过程中,端面冷速先增大后减小,在400℃左右达到峰值,峰值冷速约为30℃/s。6061铝合金的表面换热系数与温度呈非线性关系,其大小随着温度的降低先逐渐增大,在150~100℃范围内达最大值,然后下降;在风冷过程中,表面换热系数值先急剧增大,当温度下降到500℃后增速明显减慢。  相似文献   

5.
为了测量7A85铝合金表面换热系数以及优化反传热法计算表面换热系数的偏差,利用精密测温仪(GL900)对7A85铝合金片状试样进行了淬火冷却曲线测量,测量点A和B距端面间距为20 mm和40 mm。使用激光导热仪测量了在30~500℃之间试样的比热容,并进行了线性拟合。随后通过有限差分法外推得到端面冷却曲线,进而计算出表面换热系数。结果表明,使用室温比热容数据计算得到的端面淬火冷却曲线比实际曲线高,使用线性拟合后的比热容计算得到的端面淬火温度更准确。7A85铝合金端面换热系数随着温度降低,先增大后出现波动段,最终降低,在270℃时的最大表面换热系数为2250 W·m-2·℃-1。  相似文献   

6.
基于DEFORM反传热模型表面换热系数的确定   总被引:1,自引:0,他引:1  
以7075铝合金厚板淬火过程为对象,研究DEFORM反传热模型中控制参数对表面换热系数计算和温度预测精度的影响规律。结果表明,当选择实测温度曲线上的拐点温度作为温度控制点,且表面换热系数初始值接近平均换热系数时,采用反传热模型确定的表面换热系数所预测的冷却曲线与实测曲线吻合较好。在此基础上选取合理的控制参数,并确定了7075铝合金厚板淬火过程的表面换热系数,经冷却曲线预测结果与实测值对比表明,采用DEFORM反传热模型确定的表面换热系数所预测的温度场有较高精度,可以满足工程应用需要。  相似文献   

7.
针对目前无缝钢管采用外表面喷射与内表面轴向喷射的浸淬淬火方式,利用ANSYS软件对钢管浸淬温度场进行数值模拟。分析了部分浸入与全浸入淬火冷却各因素对温度场冷却均匀性的影响,这些因素包括喷射速度、钢管的旋转速度及部分浸入浸润角等。结果表明:部分浸入式淬火中,内外表面均不喷水,浸润角为180°~270°时,内外表面冷却较均匀且冷却速度较浸润角为0°~180°时快;外表面不喷射,内表面轴向喷射时,内喷速为3 m/s时,内外表面冷却较均匀;钢管的旋转速度应不低于60r·min-1时,钢管径向冷却均匀性较好。全浸入式淬火中,内喷速度为8 m/s,外喷速度为6 m/s和内喷速度为10 m/s,外喷速度为7 m/s时,内外表面冷却较均匀;钢管的旋转速度越大,内外表面的温度差波动越小,冷却均匀性越好,故钢管旋转速度应不低于60 r·min-1,但考虑到能耗及稳定性问题,钢管旋转速度则应不高于90 r·min-1。  相似文献   

8.
采用反向热传导算法并结合一维末端水淬试验求解热型材与冷却水的界面换热系数。以确定的换热系数作为热边界条件,基于Deform-3D仿真平台建立不等厚壁挤压铝型材在线水淬过程的三维热力耦合模型。系统研究型材水淬过程中的温度场、残余应力场和截面畸变。研究结果表明:随着冷却水流量的增加,界面换热系数增大;高冷却水流量的峰值换热系数出现在低的界面温度;型材淬火过程中横截面上的温度分布严重不均匀,淬火时间为3.49 s时最大温差为300°C;通过型材横截面不同壁厚部位的温差先急剧增大到峰值,然后逐渐减小;随型材各部位壁厚的增加,温度梯度明显增大;淬火完成后在型材接头内侧和壁厚为10 mm部位的两端存在较大的残余应力;非均匀冷却条件下,型材淬火过程中横截面呈现扭曲型畸变,最大扭曲角为2.78°。  相似文献   

9.
为了获取不同真空油淬工艺条件下的换热系数,对真空油淬换热特性进行研究.采用φ40 mm×80 mm不锈钢探头在双室真空油淬炉内进行真空淬火试验,测得多种工艺条件下的冷却曲线.借助INTEMP有限元软件求解热流密度,根据牛顿换热定律计算出换热系数.然后,将其作为边界条件求解淬火过程温度场,可以得到与实测值吻合较好的冷却曲线,验证了换热系数的准确性.最后,比较了不同工艺条件下的换热系数.结果 表明:油温升高会使得高温段冷却强度提升,低温段冷却强度略有降低;油面压力的升高会提高淬火油特性温度,显著提升核沸腾阶段的冷却强度;增大搅拌频率对膜沸腾阶段基本无影响,但是可以增强核沸腾和对流换热阶段冷却能力.  相似文献   

10.
通过淬火实验获得6061铝合金的冷却曲线,实验根据冷却曲线并结合数值方法获得在线淬火换热系数,运用ABAQUS有限元软件动态模拟复杂截面型材在线淬火过程。结果表明:在淬火过程中,换热系数不断变化;型材不同部位冷却速度不同,并通过淬火实验加以验证。通过ABAQUS有限元软件可以预测型材的最大残余应力;通过关键点的分析得出型材温度与应力的关系曲线。  相似文献   

11.
利用开发的特厚钢板射流淬火试验装置及多通道温度记录仪,测试了射流速度14.0~23.5 m/s、射流压力0.4~1.0 MPa条件下,84 mm、170 mm厚大断面钢板淬火温降曲线,采用有限元方法建立了三维反传热导热模型和表面换热系数模型,对比分析了射流参数和换热区分布对钢板厚向温降、温度梯度和冷速的影响。结果表明:84 mm厚钢板断面冷速与表面换热系数近似正比关系,射流速度为23.5 m/s时钢板心部冷速达3.7℃/s;170 mm厚钢板表面换热对厚向冷速影响减弱,相应的温度遗传效应和断面厚向温度梯度的影响增强。  相似文献   

12.
7055铝合金的TTP曲线及其应用   总被引:5,自引:2,他引:5  
采用分级淬火的方法测定了7055铝合金的温度—时间—性能(TTP)曲线,并结合合金实际淬火冷却曲线通过淬火因子分析方法预测了合金的硬度。结果表明,合金TTP曲线的“鼻尖”温度大约为355℃,淬火敏感温度区间为210~420℃。淬火因子分析方法预测的合金硬度值和实测值吻合较好,淬火敏感温度区间的冷却速率对合金硬度有决定性影响。根据理论计算认为,要获得最大硬度,淬火敏感温度区间的平均冷却速率需大于500℃/s。  相似文献   

13.
数值模拟喷水冷却过程时,界面换热系数的准确求解是保证模拟结果可靠的先决条件。本文采用反热传导法求解了6082铝合金喷水冷却界面热流密度和界面换热系数,并通过对比同一特征点的试验测量温度和计算温度,验证了反热传导法计算结果的可靠性。结果表明:铝合金喷水冷却过程中,界面换热经历了过渡沸腾阶段、核沸腾阶段和单相对流阶段,且过渡沸腾阶段冷却界面的热交换率明显高于核沸腾阶段;铝合金喷水冷却的界面热流密度随试样表面温度降低先增大后减小,其最大值约为4.4 MW/m~2;铝合金喷水冷却的界面换热系数随试样表面温度降低先近似线性增大后逐渐减小,其最大值出现在核沸腾换热阶段,约为23. 8 k W/m~2K。  相似文献   

14.
徐戎  李落星 《金属热处理》2021,46(12):276-281
通过一系列风冷淬火试验,研究了气体高速冲击金属热表面的换热过程,采用反传热法对界面热流密度 (q) 和界面传热系数 (h)进行了求解,探究了试样的表面粗糙度和淬火初始温度、试样表面的冷却介质流量密度对换热过程的影响。结果表明:试样淬火初始温度对风冷淬火界面换热有显著影响,当其从470 ℃增大到520 ℃时,qh的最大值增大约50%,淬火表面温度下降到200 ℃的平均冷却速率增大约43%。随试样表面介质流量密度增大,界面热交换呈现出先增大后减小的趋势,即存在一个与最高界面换热效率对应的临界试样表面介质流量密度,且喷射角度越接近90°,该临界值越小。随试样表面粗糙度增大,界面换热不断减小,这可能归因于越粗糙的表面对边界层内流体的钉扎作用越明显,越不利于提高界面换热效率。此外,在250~380 ℃区间,界面换热系数随表面温度变化曲线普遍存在一个凹陷区域,这可能与铝合金淬火冷却过程中二次相的析出有关。  相似文献   

15.
利用ANSYS有限元软件建立了AP1000核电主管道三维有限元网格模型,根据反传热法计算了0.3、0.5、0.7和1.0 m/s四种不同水流速下316LN不锈钢的表面换热系数,对其淬火过程的温度场进行了模拟,初步探讨了西屋公司提出的180 s冷却至427 ℃以下的可能性。结果表明:水流流速由0.3 m/s提高到1.0 m/s时,316LN不锈钢的表面换热系数仅由3013 W/(m2·℃)增加至3560 W/(m2·℃)。不同流速下,主管道表面和心部温度均随淬火时间的延长而降低。1.0 m/s流速下,主管道内、外表面温度下降非常快,淬火180 s时温度已降至200 ℃以下,600 s时已冷却至室温。而主管道管壁中心(壁厚为83 mm)及接管嘴凸台中心部位温度下降较慢,淬火180 s时温度分别在580 ℃和860 ℃左右,未能满足西屋公司提出的180 s冷却至427 ℃以下的要求,淬火530 s左右主管道各部位才能都冷到427 ℃以下。  相似文献   

16.
为计算ф25 mm×100 mm 40Cr圆柱试件喷雾淬火冷却过程的换热系数,采用四通道采样系统测定了喷雾淬火过程的冷却曲线,并用反传热法中的非线性估算法计算出换热系数。计算结果表明,喷雾淬火过程分3个阶段:膜沸腾阶段、核沸腾阶段和对流换热阶段,并在冷却到120℃时,换热系数达到峰值9800 W·m-2·℃-1。采用此换热系数作边界条件,对40Cr钢的喷雾淬火过程进行了数值模拟,得到淬火过程中不同时刻的温度场、组织场、硬度场和应力场。  相似文献   

17.
采用Deform V11有限元软件,计算了T形7N01铝合金锻件的表面综合换热系数,仿真模拟了锻件淬火过程中的温度场、应力场与形变位移变化规律,分析了温度与热应力对锻件淬火形变的影响与作用机制。结果表明,淬火初期因温度梯度(最大温差达225 ℃)与热应力巨大差异,锻件肋板一侧在淬火时间为10 s时产生了最大程度的弹性与塑性变形,远大于无肋一侧,弯曲曲率增大;淬火中期锻件主要发生弹性形变,厚度大的肋板一侧收缩变形加剧,曲率变小,50 s时锻件基本不再变形;淬火后期阶段热应力趋于零,锻件冷却产生微量弹性形变,淬火结束后,锻件整体产生趋向肋板一侧的塑性弯曲变形,曲率半径大于加热前。  相似文献   

18.
在厚板淬火过程的数值模拟中,换热系数的正确求解是保证其温度场及应力场模拟结果与实际结果一致的前提。在实测冷却曲线的基础上建立了换热系数求解的两种数学模型,计算了换热系数随淬火时间关系曲线。基于ABAQUS模拟软件分析了两种模型在某特定区域温度场的实测与模拟误差。结果表明,换热系数随时间呈非均匀分布,在20~40 s之间出现换热系数峰值;一点法求解的换热系数优于两点法;两种方法计算的表面温度均出现温度回升现象,但一点法求解的表面温度回升较两点法的平缓。  相似文献   

19.
研究不同淬火制度下晶粒尺寸及强化相γ′的尺寸分布、形貌和体积分数对镍基高温合金拉伸性能的影响。采用油淬和空冷两种淬火方式,其对应的平均冷却速度分别为183°C/s和4~15°C/s。实验结果表明,油淬和空冷后的二次γ′相的平均尺寸分别为24.5 nm和49.8 nm,相应的体积分数分别为29%和34%;然而两种条件下的平均晶粒尺寸几乎相等。在室温下,油冷态γ′相的拉伸强度高于空冷态的,当温度升高到650°C时,二者强度逐渐接近。断口形貌分析表明,在室温下,断口由穿晶断裂主导;随着温度升高,直至650°C以上,断口由沿晶断裂主导。结果表明,强化相γ′和晶界在镍基粉末高温合金中不同温度下发挥着不同的强化作用。  相似文献   

20.
基于末端淬火装置研究了7050 铝合金单/双级淬火过程中的喷水压力和流量密度对试样冷却规律、微观组织与残余应力的影响。结果表明,喷水压力和流量密度增大均能够加快冷却速率,冷却速率明显影响试样内部的再结晶与第二相析出;淬火试样表层残余压应力和心部残余拉应力在喷水压力和流量密度的增大到一定程度时存在残余应力的极小值,当流量密度为130 L•m-2•s-1,喷水压力为200 kPa时,冷却速度与残余应力的耦合控制最佳;双级淬火延长了试样在换热系数最大温度范围内的持续时间,提高了试样的冷却速度,冷却效果优于单级淬火工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号