首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过热压缩模拟试验机Gleeble3500进行了Ti-5Al-5Mo-5V-3Cr-1Zr(Ti-55531)合金在β相区的热模拟压缩试验(变形温度为860、885、910、935℃,应变速率为0.001、0.01、0.1、1 s~(-1)),采用光学显微镜分析了材料的组织演化行为。结果发现,Ti-55531合金变形过程中的动态软化效应以动态回复为主,在低应变速率下,组织呈现再结晶特征。为了通过材料变形机制去描述流动应力行为,考虑加工硬化和动态软化机制对位错密度的影响,建立了Ti-55531合金在β相区的位错密度内变量本构模型。结果表明,该模型能够准确预测Ti-55531合金在β相区的热变形行为。  相似文献   

2.
利用一级轻气炮装置,以不同速度的飞片对Ti-5553合金进行冲击加载;采用光学显微镜和透射电子显微镜观察并分析微观组织和变形行为;结合XRD和定量金相研究方法进行分析和计算。结果表明,Ti-5553合金在轻气炮冲击下会发生位错滑移、形变孪生和应力诱发马氏体相变(stress-induced martensite,SIM),形成α″相。α″相的生成量受轻气炮冲击速度的影响,随着冲击速度的增大,形成的α″含量呈明显上升趋势,当轻气炮冲击速度由380 m/s上升到560 m/s时,单位面积α″线的长度LA由39.18 mm/mm~2上升到52.65 mm/mm~2。  相似文献   

3.
利用分离式霍普金森压杆(SHPB)装置,对低间隙Ti-6Al-4V(TC4 ELI)钛合金中4种初生α相含量不同的等轴组织在不同应变速率(2 000、3 000和4 000 s 1)下进行动态压缩试验,通过动态压缩试验得到材料的动态真应力—应变(σ—ε)曲线,并利用金相显微镜(OM)等对试验后发生剪切失效破坏试样的端面进行观察分析。结果表明:随着初生α相含量的增加,TC4 ELI的平均动态流变应力、均匀动态塑性应变和冲击吸收功(E)的变化规律不明显,在4 000 s 1应变速率加载条件下,4组试样均发生剪切失效破坏,在失效试样的端面观察到几乎呈同心的圆弧形白亮绝热剪切带(ASB),部分剪切带发生分叉,裂纹在剪切带内形核、长大和聚合,最终导致试样断裂。  相似文献   

4.
对TA15、Ti-6432、TC21、Ti-15Mo四种具有典型特征的合金进行了静态拉伸、冲击、动态压缩和抗弹性能的测试,并分析了靶弹侵彻后合金的组织。结果表明,四种不同类别合金对应的冲击吸收功和和合金静态拉伸性能没有直接的关系。对于静态拉伸和动态压缩性能,高的抗拉强度对应较高的动态压缩流变应力,高的延伸率对应高的均匀塑性应变,这种对应关系只是一种趋势的反映,具体值没有对应的比例关系。对于动态压缩和抗弹性能,四种合金动态压缩性能排序为TC21> TA15>Ti-15Mo>Ti-6432,抗弹性能排序为TC21>TA15>Ti-6432>Ti-15Mo。但从具体数值看,TC21、TA15和Ti-6432动态压缩性能差距明显,而弹孔穿深差别并不明显,可以认为抗弹性能处于同一水平。Ti-15Mo合金弹孔穿深明显大于其它合金,说明用动态压缩性能不能完全反应材料具体抗弹性能。以上结果主要与不同合金显微组织类型和损伤过程中不同的形变损伤机制相关。  相似文献   

5.
采用分离式Hopkinson Bar技术针对不同热处理制度的TC6、ATI425以及TC3钛合金Φ5 mm×5 mm圆柱形标样进行了动态压缩实验,测定得到了试样在3000 s~(-1)高应变率条件下的动态强度、动态塑性及冲击吸收功;同时开展了以钛合金为面板、A3钢为背板的复合装甲抗弹性能试验,分析了钛合金动态力学性能与其抗弹性能之间的关系。结果表明:钛合金面板的抗弹性能与其动态强度和动态塑性均密切相关;钛合金的动态强度对材料抗弹性能的影响比动态塑性更加显著,其抗弹性能主要取决于动态强度;同时,表征钛合金动态力学性能优劣的冲击吸收功不能直接反映钛合金的抗弹能力;较大区域的正面开坑和较小的剪切充塞可以明显提高钛合金面板的抗弹性能。  相似文献   

6.
采用拉伸速率突变法,研究Ti-29Nb-13Ta-5Zr(Ti-29-13)合金冷轧后在700~800 ℃和5′10-4~1′10-2 s-1应变速率范围内的高温变形行为和变形机制,并与典型β钛合金Ti-15V-3Cr-3Sn-3Al(Ti-15-3)进行比较。结果显示两种合金中均出现了非连续屈服现象,Ti-29-13合金的亚晶行为不同于Ti-15-3合金。Ti-29-13合金的延伸率低于Ti-15-3合金,应力指数n几乎恒定为3.3,变形激活能为152~161 kJ/mol;Ti-15-3合金在730 ℃以上的n值为2.3~2.5,变形激活能为173~176 kJ/mol。  相似文献   

7.
采用拉伸速率突变法,研究Ti-29Nb-13Ta-5Zr(Ti-29-13)合金冷轧后在700~800 ℃和5′10-4~1′10-2 s-1应变速率范围内的高温变形行为和变形机制,并与典型β钛合金Ti-15V-3Cr-3Sn-3Al(Ti-15-3)进行比较。结果显示两种合金中均出现了非连续屈服现象,Ti-29-13合金的亚晶行为不同于Ti-15-3合金。Ti-29-13合金的延伸率低于Ti-15-3合金,应力指数n几乎恒定为3.3,变形激活能为152~161 kJ/mol;Ti-15-3合金在730 ℃以上的n值为2.3~2.5,变形激活能为173~176 kJ/mol。  相似文献   

8.
以球形Ti-5Ta-30Nb-8Zr合金粉末为原料,开展了粉床电子束3D打印技术制备钛合金样品的工艺研究。通过分区成形工艺控制,在一次成形中完成多种熔化电流或多种扫描速度的并行实验,快速获得该合金粉末在不同熔化工艺下的成形样品。粉床电子束3D打印成形Ti-5Ta-30Nb-8Zr合金的最佳工艺参数为熔化电流20 m A,扫描速度800 mm/s。在该工艺条件下,加工出的钛合金样品致密度高、内部缺陷少、组织均匀。与传统实验方法相比,分区控制成形技术的研究效率提高150%,可大幅降低研发成本。  相似文献   

9.
2519A铝合金动能吸收能力与抗弹性能   总被引:1,自引:0,他引:1  
采用分离式Hopkinson压杆(SHPB)装置进行了动态冲击试验,获得了名义应变速率为3500 s-1条件下2519A铝合金T87态、淬火态以及T87态与淬火态组合试样的真应力-应变曲线.通过对应力-应变曲线进行面积积分获得了试样单位体积吸收的动能值,用以比较不同处理状态试样的动能吸收能力.采用54式穿甲燃烧弹对20 mm 20 mm复合装甲板进行实弹打靶试验,以验证2519A铝合金动能吸收能力与抗弹性能的一致性,并运用TEM对侵彻弹坑边缘微结构特征进行分析.结果表明,2519A-T87态动能吸收能力最强,T87态与淬火态组合试样次之,淬火态试样最弱,打靶试验表明2519A合金的动能吸收能力与抗弹性能一致.  相似文献   

10.
以高温固溶时效和中温退火处理过的Ti-50.7at%Ni合金为研究对象,考察了合金在试验温度为20℃,加载速率分别为3mm/min、15mm/min、30mm/min、50mm/min作用下的轴向压缩应力-应变行为。结果表明:2种热处理方式处理过的Ti-50.7at%Ni合金具有约4.5%~5.0%的非线性超弹性,高温固溶时效处理的合金由于析出相强化提高了合金母相强度,因而相变超弹性能比中温退火的合金要好,在相同试验条件下,高温固溶时效处理合金的加载-卸载曲线包围面积比中温退火的大,但随着加载速率的增加而减小;在较高加载速率下,中温退火的合金表现出近乎线性超弹性。  相似文献   

11.
利用分离式Hopkinson压杆(SHPB),得到了近β型Ti-22Nb合金和稳定β型Ti-47Nb合金在室温高应变率(10~3s~(-1))加载条件下的动态真应力-真应变曲线,并观察了动态冲击后试样的绝热剪切带(ASB)形貌特征。结果表明:近β型Ti-22Nb合金在高应变率加载下较易发生绝热剪切破坏。近β型Ti-22Nb合金的主要析出相为弥散分布的颗粒状纳米ω相,表现出了明显的应变强化效应,Ti-22Nb主要析出相为针状次生α相时,具有比前者更大的平均流变应力。稳定β型Ti-47Nb合金试样没有发生绝热剪切破坏,应变率达到4800 s~(-1)时,该合金的热软化效应明显。  相似文献   

12.
美国华昌公司开发了一种钛合金,其名义成分为Ti-4Al-2.5V-1.5Fe-0.25O。该合金具有良好的力学性能及耐蚀性能,满足了当前军用装甲标准对材料性能的要求。该合金的抗拉强度为827~965MPa,屈服强度为758~896MPa,延伸率为6%~16%;16mm和32mm的厚板断裂韧性分别为49~60MPa·"m和60~65MPa·"m,2mm V型夏氏缺口冲击功分别为13.5~19.0J和13.5~21.7J,弹性模量为116~128GPa。该合金还具有优异的抗弹性能,其抗子弹撞击能力与Ti-6Al-4V ELI合金相比相当,甚至还优。美国陆军实验室对板材进行的20mm子弹撞击模拟实验表明,该合金经子弹冲…  相似文献   

13.
采用高周拉压疲劳试验,测试了片层Ti-55531合金的室温高周疲劳性能。利用TEM、SEM等分析检测方法,研究了近裂纹源区次生裂纹特征,以及显微组织均匀性对高周疲劳裂纹萌生的影响。结果发现:该片状Ti-55531合金室温高周疲劳强度σ_(-1)(1×10~7)可达639 MPa。合金显微组织中含少量晶界α和大量10~50μm大小的组织不均匀区,疲劳变形时,晶界α处开裂或组织不均匀区内次生αs断裂、α_s/β_r界面处开裂等萌生微裂纹,促进合金的疲劳失效。  相似文献   

14.
Taylor杆冲击条件下Ti-6Al-4V合金的动态断裂   总被引:1,自引:0,他引:1  
通过Taylor杆冲击实验(撞击速度范围为145-306m/s)研究Ti-6Al-4V合金在高应变率加载条件下的动态断裂行为。研究表明:该合金的临界破碎速度为217-236m/s;当撞击速度增大至260m/s时,试样断口表面除平面区及韧窝区外,还存在明显的熔化区域,试样头部端面裂纹分布呈现出自组织特征;试样撞击端面具有圆弧状头部的特殊裂纹,且未在裂纹前端发现变形组织及绝热剪切带;这类特殊的裂纹也是由于绝热剪切带而形成的,沿两最大剪应力方向形核、扩展,并最终相交形成三维"交错屋脊"状结构。  相似文献   

15.
采用Bridgman型液态金属冷却定向凝固方法,研究Ni-45Ti-5Al(摩尔分数,%)合金在不同抽拉速率(20、100和200μm/s)下定向凝固后的相组成及其形态特征。结果表明:Ni-45Ti-5Al合金定向凝固生长区呈现明显的柱状晶生长形态,定向效果良好,NiTi基体以[100]方向为择优取向,Ti2Ni析出相沿[111]晶向择优生长。随着抽拉速率的提高,Ti2Ni相更加细小、分散,由在胞晶界上几乎连续分布改变为断续分布。在20~200μm/s的宽生长速率范围内,均以胞状晶形态生长,固/液界面形态没有发生显著变化;随着抽拉速率从20μm/s增加到200μm/s,定向胞晶组织明显细化,平均胞晶间距由85μm减小到25μm。  相似文献   

16.
利用激光增材制造技术,分别在扫描速率为3、4、5 mm/s的条件下制备出Ti-22Al-25Nb合金薄壁试样,分析了3组试样的相组成、显微组织和力学性能。结果表明,激光增材制造Ti-22Al-25Nb合金显微组织由B2、O和α2相组成,随着扫描速率的增加,合金析出相体积分数和基体B2相平均晶粒尺寸呈现出减小趋势,合金室温、高温抗拉强度逐渐升高。扫描速率为5 mm/s时,所沉积材料的室温和750 ℃高温的抗拉强度最高,分别为1053 MPa和665 MPa;析出相体积分数和B2相平均晶粒尺寸最小,分别为72.52%和156 μm。  相似文献   

17.
利用激光增材制造技术,分别在扫描速率为3、4、5 mm/s的条件下制备出Ti-22Al-25Nb合金薄壁试样,分析了3组试样的相组成、显微组织和力学性能。结果表明,激光增材制造Ti-22Al-25Nb合金显微组织由B2、O和α2相组成,随着扫描速率的增加,合金析出相体积分数和基体B2相平均晶粒尺寸呈现出减小趋势,合金室温、高温抗拉强度逐渐升高。扫描速率为5 mm/s时,所沉积材料的室温和750℃高温的抗拉强度最高,分别为1053 MPa和665 MPa;析出相体积分数和B2相平均晶粒尺寸最小,分别为72.52%和156μm。  相似文献   

18.
通过OM、SEM、TEM和EBSD研究了Ti-1300合金在连续冷却条件下组织演变规律和亚稳β相的分解形式,并采用高精度膨胀法建立了合金的连续冷却转变动力曲线。结果表明:当连续冷却速度比较缓慢时,Ti-1300合金发生β→α+β转变,并获得集束状的显微组织;而当冷却速度0.3°C/sv1.5°C/s时,Ti-1300合金发生β→α+β+βm转变,并获得细针状的α+β组织和残余的βm相;当冷却速度大于3°C/s时,Ti-1300合金基本获得全部β相,所以把3°C/s认为是合金的临界冷却转变速度。在缓慢冷却过程中,Mo当量梯度是合金中α相生长主要动力。随着冷却速度的增加,Ti-1300合金的显微硬度先增加后降低,在冷却速度为0.3°C/s时,显微硬度达到最大值。  相似文献   

19.
在实验室及扩大试验条件下,研究了专门为外科植入物设计的钛合金———Ti-5Al-2.5Fe合金的机械性能及生物相容性。结果表明,Ti-5Al-2.5Fe合金性能优良,价格低廉,生物相容性好,是理想的生物植入材料。  相似文献   

20.
本文采用标准的J积分试样(15×18×82mm)测试了Ti-Al-Mo,Ti-Al-Mo-Zr和Ti-4Al-O.005B(TA5)合金的J_R阻力曲线,并与TC4等合金进行了比较。文章还对试验合金的J积分试样做了断口分析。试验表明,新合金的J_R阻力曲线为直线型,其后裂韧度Ji为88kJ/m~2,条件断裂韧性J_(0.2),达127.5kJ/m~2,比TA5和TC4合金的相应值高得多。新合金有很高的裂纹承载能力,作为中强高韧钛合金用于舰船结构材料是非常合适的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号