首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.  相似文献   

2.
Nanocrystalline cubic spinel lithium manganese oxide thin film was prepared by a polymer spray pyrolysis method using lithium acetate and manganese acetate precursor solution and polyethylene glycol-4000 as a polymeric binder. The substrate temperature was selected from the thermogravimetric analysis by finding the complete crystallization temperature of LiMn2O4 precursor sample. The deposited LiMn2O4 thin films were annealed at 450, 500 and 600 °C for 30 min. The thin film annealed at 600 °C was found to be the sufficient temperature to form high phase pure nanocrystalline LiMn2O4 thin film. The formation of cubic spinel thin film was confirmed by X-ray diffraction study. Scanning electron microscopy and atomic force microscopy analysis revealed that the thin film annealed at 600 °C was found to be nanocrystalline in nature and the surface of the films were uniform without any crack. The electrochemical charge/discharge studies of the prepared LiMn2O4 film was found to be better compared to the conventional spray pyrolysed thin film material.  相似文献   

3.
The LBS coating on the surface of spinel LiMn2O4 powder was carried out using the solid-state method, followed by heating at 425 °C for 5 h in air. The powder X-ray diffraction pattern of the LBS-coated spinel LiMn2O4 showed that the LBS coating medium was not incorporated in the spinel bulk structure. The SEM result showed that the LBS coating particles were homogeneously distributed on the surface of the LiMn2O4 powder particles. The effect of the lithium borosilicate (LBS) coating on the charge-discharge cycling performance of spinel powder (LiMn2O4) was studied in the range of 3.5-4.5 V at 1C. The electrochemical results showed that LBS-coated spinel exhibited a more stable cycle performance than bare spinel. The capacity retention of LBS-coated spinel was more than 93.3% after 70 cycles at room temperature, which was maintained at 71.6% after 70 cycles at 55 °C. The improvement of electrochemical performance may be attributed to suppression of Mn2+ dissolution into the electrolyte via the LBS glass layer.  相似文献   

4.
1 Introduction At present, LiCoO2 is almost the only cathode material of Li-ion batteries, which can be used in large-scale commercialization, because such material possesses high specific capacity, ease of preparation, high discharging flat and favorable…  相似文献   

5.
The hydrothermal synthesis of single-crystallineβ-MnO2 nanorods and their chemical conversion into single-crystalline LiMn2O4 nanorods by a simple solid-state reaction were reported.This method has the advantages of producing pure,single-phase and crystalline nanorods.The LiMn2O4 nanorods have an diameter of about 300 nm.The discharge capacity and cyclic performance of the batteries were investigated.The LiMn2O4 nanorods show better cyclic performance with a capacity retention ratio of 86.2% after 100 cycles.Battery cyclic studies reveal that the prepared LiMn2O4 nanorods have high capacity with a first discharge capacity of 128.7 mA·h/g.  相似文献   

6.
Cathode material LiMn2O4 thin films were prepared through solution deposition followed by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. Electrical and electrochemical properties were examined by four-probe method, cyclic voltammetry and galvanostatic charge-discharge experiments. The results show that the film prepared by this method is homogeneous, dense and crack-free. As the annealing temperature and annealing time increase, the electronic resistivity decreases, while the capacity of the films increases generally. For the thin films annealed at different temperatures for 2 min, the thin film annealed at 800 °C has the best cycling behavior with the capacity loss of 0.021% per cycle. While for the thin films annealed at 750 °C for different times, the film annealed for 4 min possesses the best cycling performance with a capacity loss of 0.025% per cycle. For the lithium diffusion coefficient in LiMn2O4 thin film, its magnitude order is 10−11 cm2·s−1.  相似文献   

7.
Spinel LiMn2O4 cathodes were coated with 1 mol% YF3. X-ray diffraction (XRD) analyses showed that Y and/or F did not enter the lattice of the LiMn2O4 crystal. Transmission electron microscopy (TEM) showed that a compact YF3 layer of 5–20 nm in thickness was coated onto the surface of LiMn2O4 particles. Scanning electron microscopy (SEM) observation showed that the YF3 coating caused the agglomeration of LiMn2O4 particles. The cycling test demonstrated that the YF3 coating can improve the electrochemical performance of LiMn2O4 at both 20 and 55°C. Moreover, YF3-coated LiMn2O4 exhibited an improved rate capability compared with the uncoated one at high rates over 5C. The immersion test in electrolytes showed that YF3-coated LiMn2O4 is more erosion resistant than the uncoated one.  相似文献   

8.
The complex oxide Sr4LiMn2O9 belonging to the A3n+3mA′nMn3m+nO9m+6n family (m = 3, n = 1) was prepared from a mixture of SrCO3 and LiMn2O4 in a microwave furnace by the solid state reaction. The results of structural refinements and magnetic properties are presented. The crystal structure of Sr4LiMn2O9 was solved using simultaneously X-ray and neutron diffraction data with the GSAS program in the space group P321 with unit cell parameters: a = 9.5721(7) Å, c = 7.8264(5) Å, V = 621.025 Å3, Z = 3. Sr4LiMn2O9 was found to contain 2 independent 1D chains of face-shared polyhedrons with a sequence of two octahedrons and one trigonal prism. The chains are separated by strontium cations. The refinement results show that the octahedrons and trigonal prisms in the first chain orderly contain Mn and Li, respectively, whereas the second chain is characterized by mixed occupation of these structural positions. The temperature dependence of the magnetic susceptibility of Sr4LiMn2O9 was found to be due to antiferromagnetically coupled dimers from magnetic Mn cations.  相似文献   

9.
A prismatic 204056-type high power lithium-ion battery was developed. Modified LiMn2O4 and carbonaceous mesophase sphere (CMS) were adopted as the cathode and anode, respectively. The effects of proportion of conductive carbon black in cathode and the rest time after discharge on the electrochemical properties of batteries were investigated. The electrochemical tests show that the proportion of conductive carbon black in cathodes affects the high rate capability and discharge voltage plateau distinctly. The battery with 3.0% of conductive carbon black in cathode shows excellent electrochemical performances when being charged/discharged within 2.5?4.2 V at room temperature. The discharge capacity at 20C rate is 94.4% of that at 1C rate, and the capacity retention ratio charged at 1C and discharged at 5C is 86.6% after 390 cycles at room temperature. The test result of impulse discharge at 50C for 5 s shows that the battery has outstanding high rate discharge performance when the battery is in the depth of charge of 90%, 75%, 60%, 45%, 30% and 15%. The battery also shows good charge performance. When the battery is charged at 0.5C, 1C, 2C and 4C, the ratios of capacity for constant current charge are 98.4%, 96.4%, 91.0% and 72.9% of the whole charge capacity, respectively. In addition, the rest time after discharge affects the cycle performance distinctly when the battery is discharged at high rate.  相似文献   

10.
To inhibit rapid capacity attenuation of Bi2Mn4O10 anode material in high-energy lithium-ion batteries, a novel high-purity anode composite material Bi2Mn4O10/ECP-N (ECP-N: N-doped Ketjen black) was prepared via an uncomplicated ball milling method. The as-synthesized Bi2Mn4O10/ECP-N composite demonstrated a great reversible specific capacity of 576.2 mA·h/g after 100 cycles at 0.2C with a large capacity retention of 75%. However, the capacity retention of individual Bi2Mn4O10 was only 27%. Even at 3C, a superior rate capacity of 236.1 mA·h/g was retained. Those remarkable electrochemical performances could give the credit to the introduction of ECP-N, which not only effectively improves the specific surface area to buffer volume expansion and enhances conductivity and wettability of composites but also accelerates the ion transfer and the reversible conversion reaction.  相似文献   

11.
A series of LiMn2O4 spinel was prepared by adipic acid-assisted sol–gel method at different temperatures. The structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures were investigated by differential thermal analysis (DTA) and thermogravimetery (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), inductively coupled plasma-mass spectroscopy (ICP-MS), galvanostatic charge–discharge test, and cyclic voltammetry (CV), respectively. TG–DTA shows that the weight loss occurs in four temperature regions during the synthesis of LiMn2O4. XRD indicates that the sintering temperature affects the formation of spinel phase, and prominent LiMn2O4 spinel powder with smaller atom location confusion forms about 800 °C. XPS reveals that the manganese oxidation state in spinel lithium manganese oxide synthesized at different temperatures is between +3 and +4. SEM shows that LiMn2O4 spinel synthesized at 800 °C has the uniform, nearly cubic structure morphology with narrow size distribution. ICP-MS indicates that the average chemical valence of Mn element of LiMn2O4 synthesized at 800 °C is the most close to 3.5 among the samples synthesized at different temperatures. CV illustrates that the LiMn2O4 synthesized at 800 °C has the best electrochemical activity. Charge–discharge test explains that the capacity retention sintered at 350, 700 and 800 °C over the first 50 cycles is 93.6%, 86.1% and 85.2%, respectively, but the discharge capacity at the 50th cycle is 82.2, 104.8 and 110.8 mAh g−1, respectively.  相似文献   

12.
Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH-H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.  相似文献   

13.
Thin film of spinel LiMn2O4 was obtained by spin coating the chitosan-containing precursor solution on a platinumized Si substrate, followed by a two-step annealing procedure at 300 and 700 °C, respectively. It was demonstrated that the addition of the appropriate amount of chitosan to the precursor solution enhanced the deposition of LiMn2O4 films. The thickness of the deposited film from chitosan-containing precursor solution is about 5.2 μm after five-time spin coating under a spinning speed of 2500 rpm. Without the addition of chitosan in precursor solution, the deposited film was as thin as 0.16 μm under the same processing parameters. Furthermore, the electrochemical behavior for the deposited LiMn2O4 film calcined at 700 °C for 1 h was characterized by the charge–discharge test. The result shows that the 1st discharge capacity is 56.31 μAh cm−2 μm−1 at a discharge rate of C/2 and the fading rate of the discharge capacity is only 0.19% cycle−1 after 50 cycles.  相似文献   

14.
Spinel LiMn2O4 was synthesized by a solid-state method. A 204468-size battery was fabricated and stored at 55°C. The structure and morphology of the LiMn2O4 cathode were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. Energy dispersive spectroscopy (EDS) was used to analyze the surface component of the carbon anode. The discharge capacities of LiMn2O4 stored for 0, 24, 48, and 96 h are 106, 98, 96, and 92 mAh·g−1, respectively. The cyclic performance is improved after storage. The capacity retentions of LiMn2O4 stored for 0, 24, 48, and 96 h are 83.8%, 85.8%, 86.9%, and 88.6% after 180 cycles. The intensity of all the LiMn2O4 diffraction peaks is weakened. Mn is detected from the carbon electrode when the battery is stored for 96 h. Cyclic voltammograms and electrochemical impedance spectroscopy (EIS) were used to examine the surface state of the electrode after storage. The results show that the resistance and polarization of LiMn2O4/electrolyte is increased after storage, which is responsible for the fading of capacity.  相似文献   

15.
LiFePO4 co-doped with Mg2+ and Co4+ ions was synthesized by a solid state reaction method. The structure and electrochemical properties of the prepared LiFe0.99Mg0.005Co0.005PO4 were investigated by X-ray diffraction (XRD), galvanostatic charge-discharge experiment and cyclic voltammograms (CV). Specific discharge capacity of LiFePO4 co-doped with Mg and Co ions reach 147.2 mA·h/g at 0.1C and 133.3 mA·h/g at 1C. The results of CV show that the reversibility of lithium extraction/insertion in LiFePO4 can be promoted by (Mg2+, Co4+) multiple-ion doping.  相似文献   

16.
LiNi0.5Mn1.5O4 was prepared under different cooling conditions. The electrochemical properties of LiNi0.5Mn1.5O4 prepared under different cooling conditions were investigated. The results show that LiNi0.5Mn1.5O4 synthesized with or without annealing treatment has similar X-ray diffraction patterns that can be indexed to cubic spinel structure. The mass loss occurring above 650℃ during the heating process can be mostly gained during the cooling process. LiNi0.5Mn1.5O4 synthesized with an annealing treatment exhibits almost one voltage plateau at around 4.7 V and higher capacity with a quick fading upon cycling, whereas LiNi0.5Mn1.5O4 synthesized without annealing treatment shows two voltage plateaus at around 4.1 and 4.7 V and superior capacity retention upon cycling both at rates of 1/7C and 1 C, though the capacity is not high.  相似文献   

17.
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5–5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 °C. The LFP/C microspheres obtained at calcination temperature of 700 °C are composed of numerous particles with sizes of ~20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 m2/g. The specific discharge capacities of the LFP/C obtained at 700 °C are 162.43, 154.35 and 144.03 mA·h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.  相似文献   

18.
以V2O5·nH2O、LiOH·H2O、NH4H2PO4和蔗糖为原料,采用研磨溶胶凝胶技术制备了无定形Li3V2(PO4)3前驱体,再经过焙烧获得具有单斜结构的介孔Li3V2(PO4)3正极材料,并用XRD、SEM、TEM、比表面积和电化学性能测试来表征材料的性能。研究表明,在700°C下焙烧的样品具有良好的介孔结构、最大的比表面积(188cm2/g)和最小的孔径(9.3nm)。在0.2C倍率下,该介孔样品的首次放电容量达155.9mA·h/g,经过50次循环后其容量仍然可达154mA·h/g,表现出非常稳定的放电性能。  相似文献   

19.
Pure and Gd-doped barium zirconate titanate (BaZr0.1Ti0.9O3, BZT) ceramics were prepared by solid state reaction method. Phase analysis showed the formation of the pyrochlore phase (Gd2Ti2O7) at about 5 mol% Gd doping in BZT. The microstructural investigation on the sintered ceramics showed that Gd doping significantly reduced the grain size of pure BZT ceramics, from about 100 μm to 2-5 μm. Change in the Gd concentration had minor influence on the grain size and on morphology. An increase in the Gd content decreased the Curie temperature (TC) of the BZT ceramics. The maximum dielectric constant at TC was observed for 2 mol% Gd and with further increase in Gd content the dielectric constant at TC decreased. The dielectric constant was significantly improved compared to that of pure BZT ceramic. Tunable dielectric materials with good dielectric properties can be prepared by doping BZT with Gd.  相似文献   

20.
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2YNi0.5–YMn1.5–YO4 (0≤Y≤0.15) particles were synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2YNi0.5–YMn1.5–YO4 possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4 exhibits the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号