首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 246 毫秒
1.
碳纤维增强铝基复合材料具有诸多优良性能,在航空航天以及民用领域有广阔的应用前景。在碳纤维表面电镀镍涂层,可有效改善碳纤维与铝基体的润湿性,并抑制基体对纤维的损伤。镍涂层的质量与改善效果密切相关。通过预氧化处理并结合超声振荡辅助电镀的方法在纤维表面沉积镍涂层,解决碳纤维在电镀过程中因纤维束丝难以分散而出现的"黑心"问题。在此基础上,研究电镀工艺参数对涂层质量的影响规律,并对优化工艺参数后制备的镍涂层与碳纤维的结合强度进行评价。结果表明:使用添加剂可提高镍涂层与碳纤维之间的结合力,当电镀液pH值调整到3~4、电流密度大于0.3 A/dm^2、电镀液温度控制在20~40℃时,所制备的镍涂层均匀致密。  相似文献   

2.
为了改善碳纤维与Al基体的润湿性和抑制Al基体对碳纤维的反应腐蚀,采用电镀工艺结合超声辅助振荡分散法,在碳纤维表面制备了均匀、光滑、连续的Cu界面层。通过真空压力浸渗法制备了碳纤维增强铝基复合材料。微观组织结构分析表明,Cu界面层的引入,使得所制备的复合材料中碳纤维分散好、基体致密度高、Al熔体能很好地浸渗到碳纤维束丝中形成结合良好的碳纤维-基体界面;同时,Cu界面层的引入可以避免Al熔体对碳纤维的腐蚀。力学性能测试表明,与工业纯Al相比,当碳纤维的体积分数为8%时,材料的拉伸强度可以提高143%。断口分析表明,在拉应力作用下,碳纤维-基体复合区域的碳纤维在Al基体中发生了滑移或拔出,因此在碳纤维的滑移和拔出过程中裂纹扩展被抑制,从而大大提高铝基复合材料的强度。  相似文献   

3.
在连续碳纤维增强铝基复合材料的制备过程中,需要使用化学镀铜的方法处理连续碳纤维表面,以改善纤维与铝基体之间的化学相容性和湿润性,提高其界面结合强度,获得优质的Cf/Al基复合材料。结果表明,以硫酸铜为主要镀液、甲醛为还原剂,以酒石酸钾钠作为主要助剂、在严格控制p H值为12.5和镀液温度60℃的情况下,碳纤维可获得均匀细密的铜镀层。  相似文献   

4.
本文利用电镀工艺制备了表面镀镍碳纤维,通过双辊铸轧短流程成型工艺成功制备了连续碳纤维增强铝基(Cf/Al)复合材料板,研究了浇注温度对铸轧复合材料板的微观组织、界面特征、断口形貌和力学性能的影响。结果表明,浇注温度为963~983K,轧制速度为2.7m/min,辊缝为2.0mm的条件下可制备出表面平整、无明显表面缺陷的Cf/Al铸轧复合材料板;其中,浇注温度为973K时,碳纤维与铝基体之间界面结合良好;纤维表面金属镍层明显改善了碳纤维与铝基体之间的浸润性,镍镀层还有效抑制了Al4C3脆性相的产生,使Cf/Al复合材料板力学性能大幅提升,其中浇注温度973K铸轧的Cf/Al复合材料板抗拉强度比初始的38.2MPa提高了87.4%。  相似文献   

5.
碳纤维增强铝基复合材料(Cf/Al)具有很多优良特性,作为结构材料和功能材料在航空航天等领域有着广泛的应用前景。本试验采用挤压铸造法制备了连续碳纤维增强铝基复合材料,分析了复合材料的微观形貌、界面特征及力学性能。基体材料为Al-Cu合金,增强纤维为T-300连续碳纤维。通过合理的控制工艺参数,挤压铸造后铝合金均匀、致密地填充在增强纤维之间,纤维和基体的结合界面良好,纤维表面镀镍及未镀镍的Cf/Al复合材料界面均未发现Al4C3脆性相。纤维体积分数为50%的铝基复合材料抗拉强度和弹性模量分别为512 N/mm2和163 GPa,显著高于金属基体的。  相似文献   

6.
采用真空热压烧结工艺制备了纤维长度为3mm、质量分数为3%的短碳纤维增强2024铝基复合材料。研究了热压工艺对复合材料密度、晶粒尺寸、界面结构和硬度的影响。结果表明,在450℃、50MPa下保温50min时,复合材料致密程度较高,纤维与α(Al)基体的界面结合良好,硬度达到最高。由于镀铜层提高了纤维与α(Al)基体的润湿性,镀铜短碳纤维比没有镀铜的短碳纤维对复合材料的性能提高更显著。  相似文献   

7.
铝基复合材料的腐蚀与防护研究现状   总被引:3,自引:0,他引:3  
对Cf/Al、SiC/Al、Al2O3/Al三种铝基复合材料的腐蚀研究现状和防护方法进行了讨论.Cf/Al复合材料以电偶腐蚀为主.SiC/Al 复合材料的腐蚀多发生在碳化硅纤维和铝基体的界面处,其原因是界面处的缝隙容易导致孔蚀和缝隙腐蚀,并最终可能造成表面剥层.Al2O3是绝缘体,与Al不存在电偶腐蚀,同SiC/Al和C/Al等相比具有更高的耐腐蚀性.目前提高铝基复合材料的防腐蚀性能的方法,主要包括铝基复合材料表面阳极氧化防护膜、表面化学钝化防护膜、其他表面涂镀层、增强体表面涂层、基体合金化等.最后展望铝基复合材料腐蚀与防护的研究和发展.  相似文献   

8.
采用放电等离子体烧结制备了双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料(Cf(Ni)-Zr C/2024Al)。为了提高碳纤维和基体的界面结合强度,对碳纤维进行了化学镀镍,研究了烧结工艺对复合材料的密度、显微硬度和拉伸强度的影响。结果表明,在烧结温度为480℃,烧结压力为30 MPa,保温时间为10 min时,可以得到结构致密,性能优异的铝基复合材料。复合材料的密度仅为2.71 g/m~3,显微硬度、拉伸强度和伸长率分别为105.6 HV、330 MPa和10.2%,力学性能均高于2024Al合金。力学性能的提高归因于表面化学镀碳纤维和基体良好的界面结合、ZrC的网状分布结构、以及增强相和基体热膨胀系数不匹配导致的位错增强。  相似文献   

9.
本文选用Ti-6Al-4V钛合金为基体,镀铜碳纤维布为增强相来制备钛合金/碳纤维布复合材料。通过放电等离子烧结法(SPS)对镀铜碳纤维布与钛合金薄片进行叠层烧结,制备钛合金/碳纤维布叠层复合材料,并对其界面形貌、微观组织与力学性能进行表征。结果表明:镀铜碳纤维均匀分布在钛合金/碳纤维布复合材料中,CuTi, Cu和少量的TiC沿着纤维和基体的界面分布。钛合金/碳纤维布复合材料具有比钛合金略高的塑性,同时屈服强度和抗压强度与钛合金相比有了明显的提高。碳纤维表面电镀铜对复合材料界面有着重要的影响:(1)显着降低钛合金/碳纤维布复合材料的烧结温度;(2)提高了碳纤维和钛基体之间的润湿性,改善了界面结合,从而提高了钛合金/碳纤维布复合材料的力学性能;(3)有效地抑制TiC脆性相的产生,与未镀铜的碳纤布增强钛复合复合材料相比,镀铜碳纤维布/钛合金复合材料具有更好的塑性。  相似文献   

10.
选用Ti-6Al-4V(TC4)钛合金为基体,镀铜碳纤维布为增强相来制备钛合金/碳纤维布复合材料。通过放电等离子烧结法(SPS)对镀铜碳纤维布与钛合金薄片进行叠层烧结,制备钛合金/碳纤维布叠层复合材料,并对其界面形貌、微观组织与力学性能进行表征。结果表明:镀铜碳纤维均匀分布在钛合金/碳纤维布复合材料中,Cu Ti,Cu和少量的TiC沿着纤维和基体的界面分布。钛合金/碳纤维布复合材料具有比钛合金略高的塑性,同时屈服强度和抗压强度与钛合金相比有了明显的提高。碳纤维表面电镀铜对复合材料界面有着重要的影响:(1)显着降低钛合金/碳纤维布复合材料的烧结温度;(2)提高了碳纤维和钛基体之间的润湿性,改善了界面结合,从而提高了钛合金/碳纤维布复合材料的力学性能;(3)有效地抑制TiC脆性相的产生,与未镀铜的碳纤布增强钛复合复合材料相比,镀铜碳纤维布/钛合金复合材料具有更好的塑性。  相似文献   

11.
采用电镀Cu碳纤维(Cf)与化学镀Cu的Ti3SiC2粉及Cu粉进行湿混,通过真空热压烧结法制备Cf增强的Cu-Ti3SiC2复合材料。研究了其致密度、电阻率、维氏硬度随Cf,Ti3SiC2含量变化的规律。实验结果表明,Ti3SiC2体积含量为20%,Cf体积含量为8%时,制备的Cf增强Cu-Ti3SiC2复合材料综合性能最好。Cf镀Cu和Ti3SiC2镀Cu改善了它们和Cu的润湿性,从而提高了相互之间的结合强度是复合材料获得良好综合性能的基本原因。  相似文献   

12.
本文采用化学镀铜法对短碳纤维表面进行镀铜,并用电镀法对长碳纤维表面进行连续镀铜后,再切割成镀铜短碳纤维.随后用粉末冶金法制备了含有这两种镀铜短碳纤维的碳纤维-铜-石墨复合材料和不含碳纤维的铜-石墨复合材料,对它们的物理和力学性能进行了测试,并在滑动速度为15 m/s、载荷为4.9N的干摩擦条件下进行了30 h磨损试验,结果表明:化学镀铜短碳纤维-铜-石墨复合材料的导电性、硬度、抗弯强度和耐磨性优于电镀铜短碳纤维-铜-石墨复合材料和不含碳纤维的铜-石墨复合材料.  相似文献   

13.
短碳纤维增强铜基复合材料是一种极具发展前景的金属基复合材料。但是碳纤维和铜的浸润性很差,一般须对短碳纤维进行表面镀铜处理。主要介绍了短碳纤维表面电镀铜和化学镀铜工艺,从工艺流程等方面分析其优缺点,并探讨了短碳纤维化学镀铜未来的研究方向。以甲醛为还原剂得到的镀层铜纯度接近100%,以此制成的铜基复合材料的导电性也较优异,但甲醛对人体有害和污染环境。次磷酸钠还原体系的化学镀铜工艺无毒无害,但需对碳纤维进行敏化活化处理。如何简化次磷酸钠还原体系化学镀铜工艺,提高镀铜层的纯度将是今后研究发展的重点。  相似文献   

14.
采用化学镀法在碳纤维表面制备无钯镍镀层,用粉末冶金法制备了以镀镍碳纤维为增强相的Sn-3.0Ag-0.5Cu复合钎料,借助于SEM、EDS、OM等检测手段对其微观组织进行分析,研究镀镍碳纤维含量对复合钎料微观组织和基本性能的影响。结果表明:镀镍碳纤维主要分布在复合钎料的晶界处;随着复合钎料中镀镍碳纤维含量的增加,其弥散度逐渐降低,熔点变化不大;当镀镍碳纤维含量(质量分数)大于1%时,镀镍碳纤维在晶界处的团聚现象严重,复合钎料的电阻率显著升高。添加1%的镀镍碳纤维有助于减小液态复合钎料在助焊剂界面和Cu基板处的表面张力,降低钎料基体的电流密度,使得复合钎料的润湿性提高,电阻率有所降低。  相似文献   

15.
Nickel- and copper-coated, as well as uncoated, short carbon fibers were dispersed in melts of aluminum or aluminum alloys by stirring followed by solidification of composite melts. Microstructural examina-tion of cast composites indicated extensive damage to the surface of the carbon fibers when uncoated carbon fibers were introduced into the melt under the conditions of the present investigation. When nickel- or copper-coated carbon fibers were used to make composites under similar conditions, the fibers generally did not exhibit observable amounts of fiber surface degradation at the interface, except for small islands of an Al4C3 phase. When nickel-coated carbon fibers were used to make composites, the coating reacted with the melt, and NiAl3 intermetallic phase particles were observed in the matrix away from the fibers, indicating a preference for nucleation of NiAl3 away from the fiber surfaces. Under a transmission electron microscope (TEM), the NiAl3 phase was not observed on the surface of carbon fi-bers, except in some regions where the NiAl3 phase engulfed the carbon fibers during growth. When cop-per-coated carbon fibers were used to make composites, the coating reacted with the melt, and particles of CuAl2 intermetallic compound were generally dispersed in the matrix away from the fibers, except for a few locations where the CuAl2 phase was found at the interface under TEM observation. These micro-structures are discussed in terms of nucleation of primary α aluminum and NiAl3 or CuAl2 phases and the interaction between short carbon fibers and these phases during growth while the composite was so-lidifying. Additionally, the role of the reaction between nickel or copper coatings and the melt on struc-ture formation is discussed; some of the differences between the nickel and copper coatings are attributed to the fact that nickel dissolves with an exothermic reaction. The differences between solidification of short fiber composites and particle or fiber composite are also discussed.  相似文献   

16.
Copper-coated woven carbon fiber-reinforced aluminum alloy composite was prepared by spark plasma sintering (SPS). Microstructure, three-point bending mechanical property, and the failure mechanisms of the composite were investigated. Microstructure observation shows that the carbon fibers bond compactly with matrix alloy. Compared with the matrix aluminum alloy, the bending strength, ductility, fracture energy, and cracking resistance of the composite are evidently improved. Microstructure analyses reveal that the high specific strength of carbon fibers and transfer of stress from matrix alloy to carbon fibers are responsible for the increase of the composite bending strength. The expanding of cracks is restrained, and cracking resistance of the composite is improved by adding woven carbon fiber. Attributed to the carbon fibers’ debonding, cracks deflection, and multipath propagation mechanisms, the fracture energy of the composite increases.  相似文献   

17.
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix, nickel- and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique. The interface wettability, microstructure and mechanical properties of the composites were compared and investigated. Compared with the uncoated fiber-reinforced aluminum matrix composite, the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process. Under the same processing condition, aluminum melt was easy to infiltrate into the copper-coated fiber bundles. Furthermore, the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber–matrix interface bonding performance. The mechanical properties were evaluated by uniaxial tensile test. The yield strength, ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa, 140 MPa and 82 GPa, respectively. In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite, the yield strength, ultimate tensile strength and elastic modulus were about 60 MPa, 70 MPa and 79 GPa, respectively. The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber–matrix interface bonding, which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state, giving full play to the bearing role of carbon fiber.  相似文献   

18.
碳纤维的化学镀铜   总被引:1,自引:0,他引:1  
本文提出一种碳纤维的化学镀铜技术,研究了各种工艺参数对镀层特性的影响。结果表明,使用化学镀技术在碳纤维表面镀铜是成功的,镀层均匀、连续;镀铜速率主要受镀液中HCHO的浓度控制。应用此镀铜碳纤维成功地制造出碳纤维增强铝基复合材料。  相似文献   

19.
Electroplating technique was applied to coat carbon fibers with nickel. Before plating, the initial fibers were pretreated to improve the wettability in bath. The electroplating parameters were optimized to obtain high-quality nickel-coated carbon fibers, and the effects on plating were studied. The coated carbon fibers were characterized by SEM, XRD, and XPS. The coatings are uniform, smooth, bright, and adherent to carbon fibers not only along length but also along the diameter of the filaments, and mainly composed of pure nickel. Metal-carbon-oxygen bonds are present at the interface between nickel coatings and fibers, which provides the interfacial binding force. The results of performance tests showed that the nickel-coated fibers possess a good bonding strength not less than 78.5 kPa, and exhibit excellent oxidation resistance at high temperature. Compared with the initial fibers, the wettability with aluminum is also improved obviously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号