首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 209 毫秒
1.
The influence of pre-deformation on aging precipitates of three near peak-aged Al–Cu–Li alloys,1460 alloy with a low Cu/Li ratio(1.46),2050 alloy with a high Cu/Li ratio(4.51) and 2A96 alloy with a medium Cu/Li ratio(2.97),was investigated.The strength of the aged alloys is enhanced by the pre-deformation.The effectiveness of pre-deformation on precipitates is dependent on the alloy's composition.With increasing the pre-deformation,the population density of T1(Al_2Cu Li) precipitates increases in all three Al–Cu–Li alloys and their diameter decreases in 2050 and 2A96 alloys,and the greatest effectiveness is observed in 2A96 alloy.The pre-deformation also increases the population density of θ'(Al_2Cu)precipitates and decreases their diameter in 2050 and 2A96 Al–Li alloys,but the effectiveness is smaller compared to that on T1 precipitates.In 1460 alloy subjected to two-step aging at 130 °C for 20 h followed by 160 °C for 12 h,the main precipitates are δ'(Al_3Li).At 2%–6% pre-deformation,GP-I zones form and pre-deformation displays little influence.Eight percentage pre-deformation promotes θ'/θ' precipitation and increases their population density.  相似文献   

2.
The microstructure evolution and the corrosion feature of Al–x Cu– y Li–Mg alloys( x : y = 0.44, 1.65 and 4.2) were systematically investigated under the same artificial aging conditions. The relationships between types of precipitates and mechanical performance, as well as electrochemical behaviors, were discussed. Our results show that different types of precipitates can be obtained in alloys with different Cu/Li mass ratios, which significantly influences the mechanical performance of the alloys and substantial corrosion behaviors. Specifically, the analogous corrosion evolution in the aging Al– x Cu– y Li–Mg alloys was first ascertained to be derived from the growth mechanism of the precipitates at the grain boundary(GB). Moreover, a small number of GB precipitates can be obtained in the aged alloy with the lowest Cu/Li mass ratio, thereby resulting in the largest intergranular corrosion resistance. A higher proportion of the GB T_1 phase in the continuous precipitates induces higher corrosion sensitivity in alloy with a high Cu/Li mass ratio.  相似文献   

3.
The Mg–12Gd–1Er–1Zn–0.9 Zr(wt%) alloy with ultra-high strength and ductility was developed via hot extrusion combined with pre-deformation and two-stage aging treatment.The age-hardening behavior and microstructure evolution were investigated.Pre-deformation introduced a large number of dislocations,resulting in strain hardening and higher precipitation strengthening in the subsequent two-stage aging.As a result,the alloy showed a superior strength–ductility balance with a yield strength of 506 MPa,an ultimate tensile strength of 549 MPa and an elongation of 8.2% at room temperature.The finer and denser β' precipitates significantly enhanced the strength,and the bimodal structure,small β-Mg_5RE phase as well as dense γ' precipitates ensured the good ductility of the alloy.It is suggested that the combination of pre-deformation and two-stage aging treatment is an eff ective method to further improve the mechanical properties of wrought Mg alloys.  相似文献   

4.
We presented the solution of deformation-induced precipitation after homogenization to enhance the mechanical properties of Mg–6 Zn alloys. The results show that the improved strategy exhibits more effective strengthening role than grain refinement methods based on low-temperature severe plastic deformation under the same strain. The low-temperature deformation with larger extrusion ratio results in massive nano-sized precipitates and excellent mechanical properties with the yield strength of 355 MPa and the ultimate tensile strength of 405 MPa. The increased mechanical properties are strong and tough enough to resist the stress and not be worn away when the alloy nail penetrates through the pig thigh bone, potentially extending more orthopedic surgery applications for Mg–Zn alloys.  相似文献   

5.
Mg–9Li–3Al–1.6Y alloys were prepared through mixture method. The microstructure, mechanical properties, and corrosion resistance of the as-cast and asextruded alloys were studied by optical microscopy(OM),scanning electronic microscopy(SEM), X-ray diffraction(XRD), mechanical properties testing, and electrochemical measurement. The as-cast Mg–9Li–3Al–1.6Y alloy with the average grain size of 325 lm is composed of b-Li matrix, block a-Mg, and granule Al_2Y phases. After extrusion, the grain size of the as-cast alloy is obviously refined and reaches to 75 lm; the strength and elongation of the extruded alloy are enhanced by 17.20 % and49.45 %, respectively, owing to their fine microstructure and reduction of casting defects. The as-extruded alloy shows better corrosion resistance compared to the as-cast one, which may be related to the low stored energy and dislocation density in the extruded alloy, also the homogenization treatment before extrusion.  相似文献   

6.
The Mg–8Sn–4Zn–2Al(TZA842, in wt%) alloys with different initial microstructure(as-cast-AC and homogenization treatment-HT) subjected to hot extrusion. Also, the strengthening responses to AC and HT for the extruded TZA842 alloys were reported. The results revealed that the alloy subjected to HT shows finer grain size, more homogenous microstructure and weaker basal texture than those of counterpart subjected to AC. In addition, compared with TZA842-AC alloy, precipitates were finer and uniformly dispersed in TZA842-HT owing to the utilization of HT. Moreover, the TZA842-HT alloy showed higher yield strength of 200 MPa, ultimate tensile strength of 290 MPa and elongation(EL) of17.9% than those of TZA842-AC, which was mainly attributed to the combined effects of grain boundary strengthening,precipitation strengthening, solid solution strengthening and weak texture. Strengthening mechanism for both alloys was discussed in detail.  相似文献   

7.
The Mg–9Al–5Sn-xSb(x=0.0,0.3,0.6,1.0,1.5 wt%) alloys were prepared by a simple alloying process followed by hot extrusion with an extrusion ratio of 28.2. The effects of Sb additions on the microstructure and mechanical properties of the Mg–9 Al–5 Sn alloys were investigated by optical microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer. The results indicated that the phases α-Mg matrix, Mg_2_Sn, Mg_3Sb_2 and Mg_17 Al_12 exist in the as-cast Sb-containing alloys. Sb addition results in the precipitation of Mg_3Sb_2. The dendritic size of these alloys decreases with the addition of Sb. Both their ultimate tensile strength and yield strength of extruded alloys increase, and their elongation decreases gradually with increasing the content of Sb. The better mechanical properties of the as-extruded alloys were achieved due to the refined grains and the formation of dispersive second phases Mg_3Sb_2.  相似文献   

8.
The effect of cryorolling on the precipitation process of deformed Cu–Ni–Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2 Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu–Ni–Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.  相似文献   

9.
High-strength Cu–3Ag–0.5Zr alloy plates were produced by multi-pass rolling in the temperature range of500–800 °C. An increase in strength was observed by rolling in the aforementioned range without significant loss in ductility. All the rolled samples show higher strength than solution-treated and aged samples. The maximum strength was observed for plates rolled at 500 °C with a yield strength and ultimate tensile strength of 311 and385 MPa, respectively, and retaining a ductility of 23 %.Transmission electron microscopy(TEM) studies showed uniform distribution of fine silver precipitates and high dislocation density in the rolled samples. Nevertheless, the size of precipitates and dislocation density varied with the rolling temperature. The superior strength achieved in the rolled samples is attributed to grain refinement, dislocation strengthening, and precipitation hardening. This method can be employed to produce high-strength plates of precipitation hardenable copper alloys.  相似文献   

10.
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)_2 eutectic phases, and fine intermetallic compounds g(MgZn_2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)_2, intermetallic g(MgZn_2), and h(Al_2Cu). During homogenization at 450 °C, fine g(MgZn_2) can dissolve into matrix absolutely. After homogenization at 450 °C for 24 h, Mg(Cu, Zn, Al)_2 phase in 7136 alloy transforms into S(Al_2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.  相似文献   

11.
Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study, which is rather different from the general negative effects of pre-deformation on high-strength 7XXX aluminum alloys. In order to explain the strengthening mechanism relating to the positive effect, in the present study, the microstructure of the aged 7N01 alloy with different degrees of pre-deformation was investigated in detail using advanced electron microscopy techniques. Our results show that, without pre-deformation, the aged alloy is strengthened mainly by the η′ type of hardening precipitates. In contrast, with pre-deformation, the aged alloy is strengthened by the hierarchical microstructure consisting of the GP-η′ type of precipitates formed inside sub-grains, the ηp type of precipitates formed at small-angle boundaries, and the dislocation introduced by pre-deformation (residual work-hardening effect). By visualizing the distribution of the ηp precipitates through three-dimensional electron tomography, the 3D microstructures of dislocation cells are clearly revealed. Proper combinations of ηp precipitates, GP-η′ precipitates and residual dislocations in the alloy are responsible for the positive effect of pre-deformation on its mechanical properties.  相似文献   

12.
分析了预变形工艺对镁合金孪生行为的影响,论述了不同类型的镁合金在预变形时效处理工艺下的析出行为,阐明了该工艺下镁合金力学性能的变化规律及强化机制,并提出了通过变形工艺可以调控镁合金的析出行为,使镁合金的晶内组织向着有利于提升力学性能的结构发展,最后对预变形时效处理工艺未来的研究方向进行了展望。  相似文献   

13.
在不同磁感应强度下对固态Al_2O_3增强7055铝基复合材料进行了脉冲磁场处理。经脉冲磁场处理后,铝基复合材料的位错密度随磁感应强度的增加呈上升趋势,分析原因在于位错应变能增加和位错钉扎中心自由基对状态的改变。随着磁感应强度的提高,晶内析出相的取向性减小,数量和尺寸增加;晶界析出相由连续状态转变为断开状态,析出相数量减少、尺寸增大,并出现了明显的无沉淀析出带。这些现象主要源于磁场作用增强了晶体内部溶质原子和空位的扩散;畸变能增加、内应力的释放为析出相析出、长大提供了驱动力。力学性能随磁感应强度的增加,呈现出先升高、后降低的趋势。在B=3 T时,抗拉强度、延伸率和显微硬度达到了548.04 MPa、17.235%和1224 MPa,较处理前试样分别提高了10.3%、16.2%和20.7%。力学性能的改善主要源于位错密度增加造成的位错强化和第二相强化。  相似文献   

14.
结构钢中含铜析出相的时效强化作用   总被引:11,自引:5,他引:11  
观察并研究了高纯Fe-1.03wt%Cu和Fe-1.65wt%Cu合金中含铜粒子的时效析出对屈服强度的影响、析出粒子尺寸的分布、以及析出粒子对位错运动的阻碍作用。用Frank-Read强化理论分析了析出粒子与屈服强度的定量关系。结果表明,析出粒子是含有一定铁的亚稳Cu-Fe相,且具有一定的塑性变形能力,从而使得含铜钢能在高强度的前提下仍具有高塑性的特征。含铜析出粒子不是刚性粒子,因而其强化效应低于传统的刚性化合物析出粒子。但析出粒子中含较多的铁,可促使粒子体积量明显增多,因此仍能实现很高的整体强化效应。增加析出粒子中的铜含量可以提高粒子对位错运动的阻力及与之相应的屈服强度。  相似文献   

15.
夏峰  李建平  李高宏  朱满 《铸造》2012,61(3):258-261
研究了人工与自然双重阶段时效对铸造Al-7Si-0.6Mg合金的力学性能影响.试验结果表明:A1-7Si-0.6Mg合金经535℃×10h(固溶)+水淬+165℃×1 h(人工时效)+24h(自然时效)+165℃×5 h(人工时效)热处理工艺后,其抗拉强度321MPa、伸长率12%,相对T6热处理工艺试样其抗拉强度及伸长率分别提高了7.7%和140%;其室温拉伸断口中存在大量的等轴韧窝,尺寸细小且分布均匀,属于韧性断裂方式;人工与自然双重阶段时效对A1-7Si-0.6Mg力学性能提高的机制主要是共晶硅的球粒化与分布、Mg2Si沉淀强化、析出相Si相与位错间的交互作用.  相似文献   

16.
This study provides a detailed quantitative characterization of precipitation in an Mg–6 Zn alloy. Transmission electron microscopy (TEM) was used to characterize the average size, aspect ratio and volume fraction of the rod-shaped precipitates for ageing at 200 °C. The effect of these precipitate characteristics on the prismatic-slip-dominated deformation behaviour of the above alloy has been evaluated. In particular, their effect on the yield strength and work hardening behaviour of the alloy has been determined. The potential role of Zn solute in solution on the rate of dynamic recovery is discussed. TEM was also used to examine the precipitate–dislocation interaction mechanism on the prism plane in various precipitation states. It was found that the Orowan equation is appropriate for predicting the strengthening on the prism and basal planes due to rod-shaped precipitates.  相似文献   

17.
The 2xxx series Al alloys have been widely used in aerospace industry owing to their high strength, good plasticity and superior formability. To ensure a good control of shape, the quenched alloy sheets require a small pre-deformation before artificial aging. However, this pre-deformation considerably deteriorates the mechanical strength of the Al-3.0Cu-1.8Mg-0.5Si (wt%) alloys due to the formation of unfavorable large-sized precipitates at dislocations. To tackle this issue, we designed a pre-aging process prior to the pre-deformation. The thermal-mechanical treatment, involving pre-aging, pre-deformation and subsequent aging, markedly enhanced the ultimate tensile strength up to 521 MPa compared to that (448 MPa) of the alloy without pre-aging. Microstructure characterization revealed that the fine precipitates (~ 2 nm) with a uniform dispersion were promoted within the Al matrix, which in turn partly suppressed the formation of the unfavorable large-sized precipitate (~ 100 nm). Our findings provide a new clue for designing stronger Al alloys with age-hardenability.  相似文献   

18.
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al?xMg? 3Zn?1Cu cast alloys (x=3?5, wt.%) were investigated. As Mg content increased in the as-cast alloys, the grains were refined due to enhanced growth restriction, and the formation of η-Mg(AlZnCu)2 and S-Al2CuMg phases was inhibited while the formation of T-Mg32(AlZnCu)49 phase was promoted when Mg content exceeded 4 wt.%. The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates. As Mg content increased, the yield strength and tensile strength of the as-cast, solution-treated and peak-aged alloys were severally improved, while the elongation of the alloys decreased. The tensile strength and elongation of the peak-aged Al?5Mg?3Zn?1Cu alloy exceed 500 MPa and 5%, respectively. Precipitation strengthening implemented by T′ precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.  相似文献   

19.
Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes. This study aims to comprehensively investigate the strengthening of aluminium alloy 7005 through the imposition of severe plastic deformation supplemented by two different ageing treatments: pre-deformation artificial ageing or post- deformation natural ageing. For this purpose, microstructure evolutions of the alloy processed through mentioned procedures were studied using X-ray diffraction and scanning electron microscopy while the alloy strengthening was evaluated using Vickers hardness measurement. Results show that a superlative strengthening is obtained through the imposition of severe plastic deformation supplemented by post-deformation natural ageing. For instance, the yield strength of the alloy increases to more than 400 MPa, about one-third greater than the counterpart amount after the usual T6 treatment. This superlative strength mainly occurs due to refinement of grains, an increase of dislocation density and an increase of volume fraction of the precipitates that appeared during natural ageing. Considering the applied models, it is inferred that the increase of volume fraction of precipitates that appeared during natural ageing has a determinative role in the strengthening of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号