首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

2.
采用不同的退火工艺得到了多边形铁素体基TRIP钢(TPF)、贝氏体铁素体基TRIP钢(TBF)和回火马氏体基TRIP钢(TAM)3种不同基体结构的TRIP钢,并对它们的显微组织和力学性能进行研究。结果表明,退火工艺的不同导致实验钢的微观组织完全不同,力学性能也存在显著差异。TPF钢的基体结构为尺寸较大的多边形铁素体,其上分布着贝氏体、马氏体及少部分残留奥氏体,抗拉强度和伸长率均低于TBF钢与TAM钢。TBF钢的基体结构为贝氏体铁素体,残留奥氏体呈长条状或块状分布于贝氏体板条间,表现出高强度但伸长率不佳。TAM钢组织由退火马氏体基体、残留奥氏体及新生马氏体组成,残留奥氏体以稳定的长条状或薄膜状分布在退火马氏体晶界处或板条间,具有最佳的力学性能。  相似文献   

3.
采用CCT-AY-Ⅱ热处理连退模拟机,研究了不同配分时间下,两相区退火温度淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用不同配分时间的两相区连续退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状或块状残留奥氏体;随配分时间的增加,钢的抗拉强度和残留奥氏体含量呈下降趋势,伸长率和强塑积呈上升趋势;当配分时间为300 s时,试验钢抗拉强度达到1000 MPa,其伸长率为27.3%,强塑积高达27 300 MPa.%。  相似文献   

4.
微纳结构贝氏体钢由微纳结构贝氏体铁素体和残留奥氏体组成,具有超高强度和高塑性。如何细化块状残留奥氏体并提高薄膜状残留奥氏体含量,来实现精细组织和优良塑韧性,成为重要的科学与技术问题。本文综述了合金元素和热处理工艺等因素对贝氏体转变及其对残留奥氏体形成与形态的影响,分析了残留奥氏体在超高强韧贝氏体钢中的塑韧化机理,从而为开发超高强度高韧性的贝氏体钢提供理论与技术指导。  相似文献   

5.
Q&P(Quenching and Partitioning)超高强先进汽车用钢,具有优异的综合机械性能.采用井式盐浴炉模拟Q&P钢的热处理工艺,并对其组织性能进行分析研究.结果表明,Q&P热处理工艺决定Q&P钢的组织和力学性能,Q&P钢强塑积可以达到32016 MPa%.其微观组织主要由板条马氏体和残留奥氏体组成,残留奥氏体呈膜状分布.  相似文献   

6.
以低碳Si-Mn钢为研究对象,采用DIQPB(两相区形变+奥氏体化+贝氏体区淬火配分)与IQPB(两相区保温+奥氏体化+贝氏体区淬火配分)热处理工艺进行对比试验,研究预先高温形变热处理对残留奥氏体稳定性的提高作用。结果表明:降温过程中,贝氏体铁素体板条成批次、沿横向和纵向不断生成,残留奥氏体位于贝氏体板条间和晶界处,呈薄膜状、块状分布。EBSD和纳米压痕测试表明,一定压应力作用下,纳米压痕周围部分小块状残留奥氏体被保留,试验钢显微硬度位于1.20~1.39 GPa之间。预先高温形变热处理后贝氏体板条细化,残留奥氏体体积分数由10.41%增加到12.47%,残留奥氏体中碳含量由1.41%提高到1.56%。力学性能方面,相较于IQPB工艺,DIQPB工艺处理后试验用钢抗拉强度由1226 MPa提高到1260 MPa,断后伸长率由17.6%提高到22.0%,强塑积可达27 720 MPa·%。  相似文献   

7.
采用两相区保温-淬火-贝氏体区等温-淬火(IQPB)热处理工艺,通过SEM、TEM、XRD、EPMA、室温拉伸等手段,研究了两相区等温时间对低碳贝氏体/铁素体复相钢组织组成、合金元素分布、残留奥氏体形貌、含量及力学性能的影响。结果表明:随两相区等温时间的增加,铁素体逐渐增加,贝氏体逐渐减少;抗拉强度由1116 MPa降低至971 MPa,断后伸长率和残留奥氏体含量呈先升高后降低的趋势,残留奥氏体中的碳含量逐渐增加。由于在拉伸过程中,残留奥氏体发生TRIP效应转变为马氏体,试验钢的强度和塑性得到双重提高。经两相区等温15 min时,强塑积达29 925 MPa·%。  相似文献   

8.
60Si2CrVA钢的低温贝氏体组织   总被引:1,自引:0,他引:1  
用热膨胀法测定了 60Si2CrVA钢的相变点Ac1、Ac3和Ms,并用模拟热处理炉对试样进行了 1000℃保温 30min的奥氏体化、250℃(稍高于Ms点)×72h的低温等温转变处理。采用光学显微镜、透射电镜和X射线衍射仪对处理后 60Si2CrVA钢的组织和相组成进行了研究。结果表明, 60Si2CrVA钢热处理后得到由板条状贝氏体铁素体和薄膜状残留奥氏体组成、硬度为 463HV30的低温贝氏体组织,残留奥氏体的体积分数为 13. 7%,而不是传统的下贝氏体组织。  相似文献   

9.
QP钢经淬火配分(QP)工艺处理,所得组织由马氏体和残留奥氏体复合相共同组成,因其具有高强度和高塑性而备受关注。QP工艺的关键在于获得更多的残留奥氏体和提高残留奥氏体的稳定性。C从马氏体向奥氏体配分是稳定残留奥氏体的重要因素,并且受到其他因素的影响,一直是QP钢领域研究的重点和难点。本文从C配分的热力学、动力学,主要合金元素的影响,热处理工艺,组织和力学性能的关系4个方面,简要综述了国内外QP钢的研究进展,并对未来的研究方向进行了展望。  相似文献   

10.
作为目前新兴的汽车用钢,由铁素体、贝氏体和残留奥氏体组成的TRIP钢兼备优异的强度和塑性,发展前景广阔。TRIP钢中残留奥氏体含量、奥氏体中碳含量以及各相组织的微观形态对TRIP钢的性能有着重要的影响。添加Nb、V、Ti微合金元素可以影响其组织成分与形态,进而影响TRIP钢的力学性能。介绍了不同微合金元素对TRIP钢性能的改善效果以及添加Nb、V、Ti后热处理工艺的变化。可以看到以添加微合金元素的方式调控TRIP钢的性能,为改进汽车用先进高强度钢(AHSS)提供了可能。  相似文献   

11.
采用CR+WR+IA(冷轧+温轧+退火)热处理工艺,研究了两相区退火过程中碳化物演变行为及其对0.1C-5Mn钢组织、性能、残留奥氏体体积分数与稳定性的影响。结果表明:冷轧试验钢经温轧退火处理后,获得了超细晶铁素体与残留奥氏体复相组织,其中退火10 min与30 min试样基体上弥散少量碳化物。伴随碳化物的析出与溶解行为,残留奥氏体体积分数出现先降低后升高的趋势;在退火10 min与60 min组织中,受碳化物与新生奥氏体钉扎作用,使得铁素体以小角度取向差为主,而残留奥氏体以大角度取向差为主;高密度位错、TRIP效应、细晶强化以及析出强化为试验钢提供良好的强塑性。  相似文献   

12.
低碳Si-Mn系Q&P钢两相区的退火热处理工艺   总被引:1,自引:0,他引:1  
研究一种新型的两相区不同退火温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构的影响,并和奥氏体区退火的Q&P热处理工艺进行对比。通过SEM、TEM分析发现,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体和薄膜状残留奥氏体。残留奥氏体以两种形态存在:处于马氏体板条间的薄膜状和位于原奥氏体晶界处的块状。两相区热处理后的Q&P钢,不仅抗拉强度高达1000 MPa以上,其伸长率也高达23%以上,体积分数高达11%的残留奥氏体在组织中起到了相变诱发塑性的作用。  相似文献   

13.
对不同Mn含量(0、1.8、2.3和3.2wt%)的无碳化物贝氏体钢进行(Ms+10)℃等温转变和(Ms+10)~(Ms-20)℃连续冷却转变热处理,利用金相、XRD、TEM和EBSD等技术研究了Mn含量对钢组织性能的影响。结果表明:无Mn钢在Ms温度附近转变所得组织为贝氏体铁素体、残留奥氏体和仿晶界型铁素体混合组织,含Mn钢在Ms温度附近转变所得组织为下贝氏体,由板条状的贝氏体铁素体和片状的残留奥氏体组成,随Mn含量的提高,组织中残留奥氏体体积分数变化较小,贝氏体组织强度提高,塑性降低。Mn含量为2.3%时,综合性能最佳。  相似文献   

14.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。  相似文献   

15.
韩福广  李岩  赵增武  定巍 《金属热处理》2020,45(12):212-217
采用临界退火热处理工艺,利用场发射扫描电镜(FE-SEM)观察含铌和不含铌的两种热轧中锰TRIP钢在不同退火制度下的碳化物演变行为及铌对中锰TRIP钢微观组织、残留奥氏体体积分数与稳定性的影响。结果表明:试验钢经临界退火处理后获得超细晶铁素体与残留奥氏体复相组织。随着退火温度的提高,残留奥氏体体积分数出现先升高后降低的趋势;随着退火时间的延长,碳化物逐渐溶解,残留奥氏体体积分数逐渐增加,达到平衡后保持不变。Nb元素的加入可细化奥氏体晶粒,延缓碳化物溶解,推迟奥氏体转变,增加膜状奥氏体,提高奥氏体稳定性。  相似文献   

16.
为研究冷轧高强双相钢中残留奥氏体的作用,将DP980冷轧高强钢在两相区保温后通过配分工艺得到一定量的残留奥氏体,达到高的强度、塑性和冲击成形性的良好结合。采用光学显微镜、扫描电镜和X射线衍射仪研究了配分时间对残留奥氏体含量的影响。结果表明:配分后钢的室温组织主要由铁素体、马氏体和残留奥氏体组成;碳配分时间决定了残留奥氏体的稳定性。当碳配分时间为60 s时,组织中有12.5%的残留奥氏体,伸长率达到最大值为18%,屈服强度和抗拉强度分别为851 MPa和1310 MPa。  相似文献   

17.
通过热模拟压缩和两相区退火实验,结合SEM、XRD方法,研究基于马氏体温变形的高锰TRIP钢制备过程的组织演变,并分析了变形工艺和退火工艺对组织演变的影响。结果表明:高锰TRIP钢温变形促进马氏体分解及铁素体动态再结晶的发生,两相区变形过程中可以形成奥氏体,同时渗碳体粒子溶解。随后两相区退火时,铁素体通过再结晶完成等轴化,奥氏体持续形成的同时渗碳体粒子逐渐溶解。通过高锰TRIP钢马氏体温变形加两相区退火工艺,可以在较小应变量和较短退火时间条件下获得由亚微米尺度的铁素体基体、马氏体和残留奥氏体组成的复相组织。  相似文献   

18.
采用D-ART(两相区形变-奥氏体逆相变)退火热处理工艺,研究不同两相区压缩量对试验钢组织演变、残留奥氏体含量与断裂性能的影响规律。结果表明:试验钢经两相区压缩退火后,获得铁素体、奥氏体与马氏体等多相组织,随压缩量由零增加到15%,残留奥氏体含量由15. 3%增加到23. 4%,其稳定性逐渐增强,C元素配分行为明显;对比未变形退火试样性能,压缩10%和15%的退火试样断后伸长率显著提高,分别达到35. 8%、42. 0%,强塑积最大值可达到35 490 MPa·%;压缩退火试样断口韧窝均匀,断裂性能得到有效改善。  相似文献   

19.
采用双相区再加热-淬火(IQ)工艺,研究了初始组织为铁素体-珠光体的低碳钢在双相区退火过程中奥氏体的组织特征及形成机理。结果表明,经890℃奥氏体化900 s后空冷处理,获得了等轴状铁素体和块状或条状珠光体双相组织的钢,经随后的双相区750℃再加热-淬火(IQ)工艺处理,在铁素体-珠光体初始组织的基础上获得了由亚温铁素体和块状或条状马氏体组成的双相组织。初始组织为铁素体-珠光体的钢在双相区再加热过程中,C、Mn元素在铁素体和奥氏体两相之间的配分行为控制着奥氏体的形核与长大,该过程分为三个阶段:奥氏体在珠光体片层间形核以及C在奥氏体内的扩散控制奥氏体向珠光体组织的生长;C在铁素体与奥氏体间扩散控制奥氏体继续向周围铁素体生长;Mn向奥氏体扩散并控制铁素体-奥氏体两相达到最终的平衡状态。  相似文献   

20.
采用CCT-AY-Ⅱ型钢板连续退火机对高强TRIP钢进行热处理,获得铁素体、贝氏体,残留奥氏体和少量马氏体的组织。采用SEM、EBSD等微观方法观察制备的TRIP钢的微观组织,利用XRD法测量了残留奥氏体量,实验测量了其力学性能。结果表明:820℃两相区退火,410℃贝氏体区后实验钢获得良好的综合力学性能,屈服强度达到804 MPa,抗拉强度928 MPa,总伸长率27.55%,强塑积25.57 GPa·%。这主要是退火后实验钢合适的相比例以及一定量残留奥氏体共同作用的结果;实验钢在高速拉伸下,应力随应变的增加而增加,实验钢在高速下表现出良好的力学性能,不仅具有很高的强度,而且表现出良好的塑性,高速下实验钢良好的力学性能是因为钢中大量残留奥氏体发生TRIP效应造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号