首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 588 毫秒
1.
目的 提高镁合金基体的耐蚀性能.方法 采用微弧氧化工艺对镁合金进行预处理,再通过自组装技术处理,在镁合金表面制备微弧氧化/十六烷基三甲氧基硅烷自组装复合膜层.通过SEM、EDS对复合膜的微观组织结构进行分析,并通过XPS、拉曼光谱分析了复合膜的表面成分,利用电化学阻抗谱、极化曲线、盐雾实验和浸泡实验检测了复合膜层的耐腐蚀性能.结果 复合膜均匀覆盖在镁合金表面,且复合膜较为光滑,主要含有C、O、F、Si等元素.经过自组装处理后,膜层从亲水性转为疏水性,接触角达到145.07°.经电化学性能测试,复合膜的Rct值能达到2.242×106?·cm2,与微弧氧化膜相比,增大了2个数量级;此外,复合膜的腐蚀电流密度为1.314×10-8 A/cm2,与微弧氧化膜相比也降低了2个数量级,具有较好的耐腐蚀性.浸泡120 h后,复合膜的腐蚀电流密度仍有1.061×10-5 A/cm2,盐雾实验进行120 h也没有出现明显的腐蚀现象.结论 自组装技术明显提高了镁合金基体的耐蚀性能,微弧氧化膜在一定程度上增强了自组装膜层对基材的粘附力.由于复合膜的疏水性使得水滴在膜层表面停留的时间减少,所以膜层的耐蚀性会随着疏水性增大而大大提高.  相似文献   

2.
Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能   总被引:2,自引:0,他引:2  
采用微弧氧化技术和有机镀膜技术相结合的复合处理方法实现Mg-Mn-Ce镁合金表面改性,获得超疏水复合膜层,研究微弧氧化膜的表面特征、有机镀膜电化学反应过程、复合膜层的润湿特性和耐腐蚀性能。结果表明:镁合金经微弧氧化处理后由于微弧氧化膜表面呈微纳多孔结构,表现为超亲水特性,其蒸馏水的静态接触角接近0°;在微弧氧化膜上经有机镀膜后,其形成的有机薄膜的静态接触角高达173.3°,表现出优良的超疏水特性。镁合金经微弧氧化处理后具有良好的耐腐蚀性能,经有机镀膜超疏水复合处理后,耐腐蚀性能得到进一步提高。复合膜层在3.5%NaCl溶液中,与基体相比动电位极化腐蚀电流密度减小了3个数量级、而电化学阻抗提高了3个数量级,耐腐蚀性能明显改善。微弧氧化与有机镀膜相结合的复合处理使镁合金表面在实现超亲水-超疏水功能转换的同时显著提高镁合金的耐腐蚀性能。  相似文献   

3.
目的提高钼酸盐转化膜的耐腐蚀性能,制备微弧氧化增强的钼酸盐膜层。方法采用化学转化法和微弧氧化法在AZ91D镁合金表面制备钼酸盐转化膜、微弧氧化膜和微弧氧化增强的钼酸盐膜层,研究了膜层的电化学行为和腐蚀失重情况,利用SEM、EDS、XRD和激光共聚焦显微镜对膜层的表面形貌、元素组成、物相组成和粗糙度进行分析。结果 XRD分析表明,钼酸盐膜层经过微弧氧化处理后,所得膜层较微弧氧化膜层多出新相MoSi_2。钼酸盐转化膜层经过微弧氧化处理后,相比于微弧氧化膜层,表面变得平整光滑,孔洞微粒变小,粗糙度降低。钼酸盐转化膜经过微弧氧化处理后,在3.5%NaCl溶液中浸泡48 h,膜层失重最低。通过电化学测试,微弧氧化增强钼酸盐膜层的腐蚀电位较钼酸盐转化膜的腐蚀电位正移0.643 V,较微弧氧化膜的腐蚀电位正移0.419 V,腐蚀电流密度较钼酸盐转化膜降低了3个数量级,较微弧氧化膜降低了1个数量级。结论钼酸盐转化膜经过微弧氧化处理后,膜层的耐腐蚀性能优于钼酸盐转化膜和微弧氧化膜,使镁合金的应用前景有所提高。  相似文献   

4.
在镁合金表面试制了低能耗微弧氧化膜层,通过SEM、TEM及电化学腐蚀、盐水浸泡失重测试,对低能耗微弧氧化膜层的组织结构及耐蚀性能进行了研究。结果显示,低能耗电解液中制备的微弧氧化膜层与普通微弧氧化膜层表面形貌存在明显差异;前者的主要成分是非晶相而不是Mg O晶体相;电化学腐蚀及盐水浸泡失重试验结果同时显示,低能耗微弧氧化膜层的电化学腐蚀性能与常规微弧氧化膜层的差别不大,两种膜层都可以对镁合金基体起到良好的保护作用。  相似文献   

5.
采用微弧氧化技术在AZ91镁合金表面制备陶瓷涂层,然后在该涂层表面通过磁控溅射镀铜技术制备复合膜层。研究了微弧氧化陶瓷层和复合膜层的表面物相组成、表面粗糙度、表面及截面形貌、表面润湿性及电化学性能。结果表明:AZ91镁合金经微弧氧化处理后由于微弧氧化陶瓷层呈微纳粗糙多孔结构,表现为亲水特性,其物相由MgO、Mg及Mg_2SiO_4组成;而微弧氧化陶瓷层经磁控溅射镀铜处理后表面获得较为致密的具有疏水特性的铜层,表面粗糙度降低;四探针测试结果说明复合膜层的方阻为16.2 m?·~(-1),导电性良好;动电位极化曲线测试结果说明复合膜层与基体镁合金相比,其腐蚀电流密度降低10%,腐蚀电位提高了约0.36 V,腐蚀极化电阻提高约80倍;与微弧氧化陶瓷层相比,复合膜层的腐蚀电位提高了约0.24 V,但其腐蚀电流密度和腐蚀极化电阻有所下降。研究结果表明,微弧氧化与磁控溅射镀铜相结合的复合处理技术可在不降低镁合金陶瓷层耐蚀性的基础上显著提高其表面的导电性能。  相似文献   

6.
镁合金在硅酸盐体系中微弧氧化膜层的性能研究   总被引:6,自引:1,他引:6  
利用交流微弧氧化装置对AZ91D镁合金在硅酸盐体系中进行了微弧氧化处理,并通过扫描电镜、电化学测试技术和表面性能测试仪等研究了氧化时间和电流密度对微弧氧化膜层表面形貌、厚度、耐蚀性、摩擦磨损性能和结合力的影响.结果表明:随氧化时间和电流密度的增大,镁合金微弧氧化膜层中微孔的数量减少,但微孔的直径和表面粗糙度增大.膜层厚度随氧化时间和电流密度的增加呈线性增大,但与基体的结合力明显降低.镁合金微弧氧化膜层的耐蚀性和耐磨性随氧化时间和电流密度的增大呈先增大后减小的趋势.镁合金在硅酸盐体系中微弧氧化处理的最佳工艺为氧化时间40min、电流密度0.20A/cm2.  相似文献   

7.
目的提高镁合金微弧氧化膜层的耐蚀性。方法在锆盐体系电解液中对AZ91D镁合金进行微弧氧化处理,通过调节二次电压对AZ91D镁合金微弧氧化膜层的孔隙进行封闭,采用XRD、SEM和电化学测试分别对微弧氧化膜层的物相、表面形貌和耐蚀性进行了研究。结果二次电压对膜层的相成分没有影响,主要相组成为MgO、MgF_2、ZrO_2、Mg_2Zr_5O_(12)。随着二次电压的升高,膜层表面放电微孔孔径先减小后增大,孔隙率先降低后升高。与没有二次电压相比,施加二次电压的腐蚀电流降低2~3个数量级,极化电阻升高1~2个数量级,耐蚀性明显提高,且当二次电压为160 V时,膜层的极化电阻最高,耐蚀性最好。结论二次电压能够对AZ91D镁合金微弧氧化膜层的孔隙进行封闭,进而阻止腐蚀液通过微孔进入基体,提高膜层的耐蚀性。  相似文献   

8.
利用自主开发的微弧氧化工艺处理了实际镁合金压铸试样,并探讨了微弧氧化膜层对镁合金基体拉伸性能的影响。研究发现,微弧氧化处理的镁合金压铸件试样表面的膜层厚度均匀、色泽均一;膜层含有MgO、MgAl2O4及Mg2SiO4等物相,且MgO含量随处理时间的延长而增加;处理时间合适时,膜层几乎不影响镁合金基体的拉伸性能,但随着处理时间的增加,由于膜层中存在的诸多缺陷而使基体的拉伸性能开始有所下降。  相似文献   

9.
镁合金微弧氧化膜有机封孔耐腐蚀性能的研究   总被引:6,自引:0,他引:6  
镁合金AZ91D经微弧氧化处理后得到与基体结合牢固、表面多孔的氧化膜,研究了在该氧化膜上涂覆有机涂层进行封孔的方法,利用扫描电镜从复合膜层的横截面分析了有机涂层对微弧氧化膜层的封孔情况,并对封孔后的镁合金表面膜层的结合性能和耐腐蚀性能进行了初步试验分析.研究表明,有机涂层能渗入微弧氧化膜孔洞内5~30μm,与氧化膜层结合紧密.经1% HCl溶液浸泡试验,结果表明经过有机封孔后的微弧氧化膜层的耐腐蚀性能大大提高.  相似文献   

10.
在硅酸盐电解液体系中,采用交流微弧氧化方法在增强体体积分数为33%的(Al_2O_3-SiO_2)_(sf)/AZ91D镁基复合材料表面制备出完整的保护性氧化膜.利用SEM,EDS和XRD分析了氧化膜的形貌、成分和相组成,测量了膜层的显微硬度分布.采用电化学阻抗谱(EIS)评价了微弧氧化表面处理前后复合材料的电化学腐蚀性能,确立了不同浸泡时间对应的等效电路.结果表明,微弧氧化膜主要由MgO和Mg_2SiO_4相组成,最大硬度达到1017 HV.氧化膜电化学阻抗模值|Z|与镁合金基体相比大幅度提高,耐腐蚀性能明显高于基体.在3.5%NaCl溶液里浸泡96 h后,EIS出现感抗弧,显示膜内部开始出现点蚀破坏.氧化膜耐蚀性由膜内致密层特性所决定.  相似文献   

11.
为研究氟钛酸钾(K2TiF6)添加对Al-Mg复合板微弧氧化涂层结构和耐腐蚀性能的影响,在硅酸盐-氢氧化钠电解液体系中加入不同浓度的氟钛酸钾(0、1、2和3 g·L-1),利用微弧氧化技术(MAO)在Al-Mg复合板表面制备陶瓷氧化物涂层。通过SEM、XRD、EDS和电化学工作站等对制备陶瓷氧化物涂层显微组织、相组成、形貌及耐蚀性能进行表征。添加K2TiF6后,Al-Mg复合板Al侧的涂层厚度、表面孔隙率和表面粗糙度随K2TiF6浓度的增加呈下降的趋势(24.2~18.4μm、6.8%~5.3%、3.55~2.23),Mg侧涂层呈上升趋势(21.0~26.6μm、3.6%~5.3%,3.35~4.33),此外涂层中的Ti和F元素含量增加,各样品的耐蚀性均有所提高。添加K2TiF6为2 g·L-1时,两侧涂层的耐蚀性最好,其中Rt均比未添加的样品增加...  相似文献   

12.
结合国内外镁合金微弧氧化机理的研究成果,重点介绍了镁合金微弧氧化的生长机理,利用光发射谱识别等离子体放电过程中的反应元素,并计算等离子体温度。对镁合金微弧氧化功能膜以及增强相对镁基复合材料微弧氧化陶瓷膜耐蚀性的影响作了简要介绍。概述了在镁合金微弧氧化过程中,不同体系的电解液各自具有的优缺点,及对陶瓷膜结构和性能产生的重要影响。添加剂可以提高电解液的导电性和稳定性,减小陶瓷膜的孔隙率。详细阐述了合金元素、电源类型、电参数和后处理封孔技术对镁合金陶瓷膜结构、形貌及性能的影响。基于镁合金微弧氧化技术的研究现状,对镁合金微弧氧化技术的研究方向进行了展望。  相似文献   

13.
镁合金微弧氧化及后续涂装耐蚀性电化学分析   总被引:1,自引:1,他引:0  
采用IM6e型电化学工作站,对MB8镁合金微弧氧化及封孔涂装后试样进行电化学I/E极化曲线和Tafel斜率分析.结果表明:各种封孔工艺都能不同程度地提高微弧氧化陶瓷层的耐蚀性,其中电泳涂装降低腐蚀电流1个数量级,是良好的封孔工艺:采用水煮+有机树脂多种封孔工艺综合处理降低陶瓷层腐蚀电流2个数量级,耐蚀性最好.  相似文献   

14.
The magnesium–aluminium connecting parts are important application form for lightweight structural materials. But the conductive connect of magnesium and aluminium will cause serious galvanic corrosion problems. Therefore, the overall corrosion protective treatment is necessary. A ceramic coating was prepared via overall micro-arc oxidation to wrap the magnesium–aluminium connecting part integrally. The surface morphologies and compositions of the coatings were analysed by scanning electron microscopy and X-ray energy dispersive spectroscopy. The corrosion behaviour of the coatings was investigated with potentiodynamic polarisation tests in 3.5?wt-% NaCl solution. The growth process of ceramic coating on aluminium and magnesium surface was investigated, which showed the micro-arc oxidation reaction priority and the balanced growth process of ceramic coating under unbalanced micro-arc distribution. The results demonstrated that the overall micro-arc oxidation treatment improved the corrosion resistance and reduced the corrosion potential difference of each metal of magnesium–aluminium connecting part.  相似文献   

15.
通过微弧氧化-溶胶凝胶复合表面处理技术来提高铝合金的耐腐蚀性能,分析了多层凝胶层对6061铝合金耐腐蚀性能的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和电化学分析等方法对膜层的表面形貌、化学组成、结构以及耐腐蚀性能进行了表征。研究表明:TiO2溶胶渗入微弧氧化陶瓷膜的微孔以及裂纹中,能有效阻挡腐蚀介质的扩散和渗透;复合处理后的试样较仅微弧氧化处理更平滑、致密;膜层除了γ-Al2O3相外,经高温退火处理后出现TiO2锐钛矿,并形成较好的晶相结构;在3.5%NaCl溶液中的室温电化学行为中,复合处理较微弧氧化处理后的试样自腐蚀电位上升最高约400 mV,自腐蚀电流密度最高减小约3个数量级,极化电阻明显增大;随着凝胶层厚度的增加耐腐蚀性能逐渐增强,但当凝胶层数大于4时,膜层龟裂现象严重,并导致耐腐蚀性能开始下滑。  相似文献   

16.
利用微弧氧化技术,在Ti-6Al-2Zr-1Mo-3Nb合金表面制备陶瓷涂层。用扫描电镜和X射线衍射仪观察并分析陶瓷膜层的组织形貌和相结构,用电子万能材料试验机和数字万用表研究膜层的结合强度和绝缘性,并用MMS-1G高温高速销盘摩擦磨损试验机和YWX/Q-750盐雾试验机考察涂层的摩擦性能和耐腐蚀性能。结果表明:陶瓷层主要由金红石TiO2相和锐钛矿TiO2相构成,膜基结合强度达到30MPa以上,膜层绝缘性和耐腐蚀性良好,耐磨性得到明显改善,涂层的磨损机制表现为轻微的磨粒磨损与粘着磨损。  相似文献   

17.
镁合金表面超声微弧氧化载氟生物涂层耐磨性和耐蚀性   总被引:1,自引:1,他引:0  
目的提高医用镁合金微弧氧化涂层的耐蚀性、耐磨性,并赋予涂层抗菌性和生物活性。方法镁合金表面采用超声微弧氧化技术,在镀液中加入0.4、1.4、2.4、3.4 g/L的Na F,制备载氟生物涂层。通过SEM观察载氟对涂层表面形貌的影响,分析涂层的主要元素变化,进行了涂层厚度、孔隙率、拉伸强度的测定,并进行了摩擦磨损实验、电化学腐蚀实验、覆膜抗菌实验,评价了不同载氟生物涂层的结合性能、耐磨性能、耐蚀性和抗菌性。结果适量载氟生物涂层表面分布了均匀的孔隙。随着NaF浓度的增加,涂层中氟元素的含量升高,涂层厚度也随之增加,且涂层的结合强度提高了3.5~10.0 MPa。氟元素可促进涂层表面氧化物反应膜的形成,有利于减轻粘着磨损,使摩擦系数降低了0.17~0.35。载氟涂层的自腐蚀电位提高了95~170 m V,而自腐蚀电流降低约两个数量级,涂层抗菌率为61%~76%。结论超声微弧氧化镀液中添加Na F,提高了涂层结合强度、耐磨性、耐腐蚀性,涂层具有一定的抗菌性,实现了生物涂层的多功能性。  相似文献   

18.
采用微弧表面处理技术(微弧氧化MAO和微弧复合MCC)在AZ31B镁合金基体上制备出不同断面结构的防护涂层。通过电化学腐蚀及腐蚀疲劳测试方法,研究了MAO、MCC涂层的电化学腐蚀及腐蚀疲劳性能。结果表明,生长10 min的MAO涂层具有较好的耐电化学腐蚀性能。MAO涂层表面存在微孔和微裂纹,在应力条件下微孔和微裂纹作为疲劳断裂的裂纹萌生点,可加速裂纹的萌生与扩展,使其腐蚀疲劳寿命相较AZ31B合金基体降低了55%。而具有MCC涂层的AZ31B合金试样腐蚀疲劳极限为(64.0±5.4) MPa,比AZ31B合金基体提高了59%。在低应力载荷下(<80 MPa),微弧复合涂层试样的腐蚀疲劳强度得到明显提高。  相似文献   

19.
微弧氧化技术可以实现对金属表面的高耐蚀、耐磨等改性,传统微弧氧化所得陶瓷膜具有多孔结构,影响了其耐蚀性能及高温氧化性能。本文针对氧化膜多孔结构与腐蚀性能之间的关系开展基础研究。采用外加电场微弧氧化技术实现自封闭孔结构,并研究了不同孔结构膜层的耐蚀性能;讨论了封孔过程中胶体运动-电位-孔结构表征之间的规律性关系,评价了自封孔后膜层腐蚀性能。主要研究结果表明:膜层中的多孔结构是腐蚀介质的通道,自封孔后耐蚀性能提高,此外,耐蚀性与孔隙率及封孔填充物的成分和形态具有极大的相关性,通过调整外加电场强度和时间可以实现对自封孔的调控,从而改善耐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号