首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
在应变速率0.01~10.0 s~(-1)以及热变形温度300~500℃下,通过Gleeble-1500热模拟试验机对3003铝合金进行高温等温压缩实验。结果表明,该合金具有正的应变速率敏感性。当变形温度低于350℃时,合金的热变形机制以动态回复为主;应变速率大于1.0 s~(-1)时,合金的热变形机制以不连续动态再结晶为主。建立了综合考虑应变速率、变形温度以及应变对流变应力影响的本构方程,本构方程中的材料常数可以表示为应变的4次多项式函数。模拟结果表明:预测曲线与实验曲线吻合较好,流变应力的实测值与预测值的均方根误差以及平均相对误差分别为0.99814和5.72%。所建立的本构方程计算精度较高,可以为合金热变形流变应力的预测提供参考依据。  相似文献   

2.
6061铝合金高温拉伸流变行为   总被引:1,自引:0,他引:1  
利用Gleeble3500热模拟试验机对6061铝合金进行高温拉伸实验,研究变形温度为365℃~565℃和应变速率为0.01s-1~1s-1条件下6061铝合金的高温拉伸流变行为。结果表明,6061铝合金属于正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度的增加而降低;通过线性回归分析计算6061铝合金的应力指数n及变形激活能Q,获得其高温拉伸条件下的流变应力本构方程。  相似文献   

3.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

4.
为建立能准确描述316L不锈钢流动特性的本构模型并合理制定其热成形工艺参数,采用圆柱试样在Gleeble-3500热模拟试验机上对316L奥氏体不锈钢进行等温压缩变形试验,研究316L不锈钢在变形温度为900℃~1 100℃、应变速率为0.01s-1~2s-1条件下的流变行为,建立其热变形本构方程。结果表明,变形温度和应变速率对流变应力有明显影响,流变应力随变形温度升高而降低,随应变速率的增加而升高。建立了材料常数α,n,lnA,及应变激活能Q与应变之间的非线性关系;316L不锈钢的热变形行为可用包含Arrhenius项考虑应变、应变速率及温度影响的本构方程描述。通过相关系数r、平均相对误差(AARE)对本构方程的准确性进行分析,结果表明,该方程可以准确预测316L不锈钢的高温流变行为。  相似文献   

5.
采用Gleeble-3500热模拟试验机研究AA5083铝合金在应变速率0.0l~10 s~(-1)、变形温度300~500℃条件下的热压缩变形行为。结果表明:该合金在高应变速率和高变形温度下容易发生动态再结晶,并引起流变应力下降。为了预测不同变形条件下的流动特性,建立基于Arrhenius型方程和Zener-Hollomon参数的应变补偿本构方程,本构方程预测值与实验结果吻合较好,在实验范围内两者的平均相对误差仅为4.52%,说明提出的本构方程可对AA5083铝合金的热变形行为进行精确预测。  相似文献   

6.
采用Gleeble 3500热模拟试验机模拟了在不同温度和应变速率下6082铝合金的流变力学行为,建立了6082铝合金的本构方程,得到了应力-应变曲线。结果表明,6082铝合金流变应力随变形温度的升高而降低,随应变速率的增加而增大。本构方程对峰值应力的计算结果与试验数据具有较高的一致性。  相似文献   

7.
为了合理制定35MnB钢制件热成形工艺参数,在790~1190℃温度范围内,应变速率为0.01~10 s~(-1)及总压缩变形量(真实应变)为0.6的试验条件下,采用Gleeble-1500D热模拟试验机对35MnB钢进行热压缩变形试验,研究其高温变形行为。结果表明:流变应力随着温度的升高而减小,随着应变速率的增大而增大。同一应变速率下,随着变形温度的升高应力峰值向左移动,应力-应变曲线整体下移;同一变形温度下,应变速率越大,应力峰值越高,相应的应变量也越大。采用含有变形温度(T)和变形激活能(Q)的Arrhenius equation方程的双曲正弦模型,构建了35MnB钢在高温下流变应力与应变速率的本构方程。并验证了所构建本构方程的准确性,计算结果显示预测应力峰值与试验应力峰值吻合较好。通过采用本文所构建的35MnB钢本构方程对大型液压装载机锻造摇臂成形过程进行模拟,结果证明本文所构建的本构方程可以应用于35MnB钢制件高温成形模拟过程,并为实际生产做指导。  相似文献   

8.
采用Gleeble-1500热模拟试验机对4032铝合金在变形温度370~490℃、应变速率0.02~5 s-1的条件下的流变应力进行了研究.分析了变形温度和应变速率对4032铝合金高温塑性变形应力的影响,计算出了激活能和应力指数值.建立了4032铝合金的本构方程.  相似文献   

9.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

10.
采用Gleeble-3500型热模拟机,分析了2219铝合金在变形温度为330~450℃,应变速率为10~(-2)~10 s~(-1),统一压缩变形量为60%的条件下的热变形行为,研究了应变速率和变形温度对流变应力的影响,建立了超大型环形件用2219铝合金热变形时的本构方程和热加工图。结果表明:2219铝合金的流变应力随变形温度的升高和应变速率的降低而降低;基于应变-应变速率补偿模型建立的本构方程可以更好地预测其流变行为,实验值与预测值的相对误差的标准偏差为6. 7%,最大相对误差绝对值为18. 7%;确定了热加工最佳工艺参数区间:应变速率为10~(-2)~1. 2×10~(-2)s~(-1),变形温度为400~430℃。  相似文献   

11.
12.
The hot compression deformation behavior of Cu–3Ti–0.1Zr alloy with the ultra-high strength and good electrical conductivity was investigated on a Gleeble–3500 thermal-mechanical simulator at temperatures from 700 to 850 °C with the strain rates between 0.001 and 1 s−1. The results show that work hardening, dynamic recovery and dynamic recrystallization occur in the alloy during hot deformation. The hot compression constitutive equation at a true strain of 0.8 is constructed and the apparent activation energy of hot compression deformation Q is about 319.56 kJ/mol. The theoretic flow stress calculated by the constructed constitutive equation is consistent with the experimental result, and the hot processing maps are established based on the dynamic material model. The optimal hot deformation temperature range is between 775 and 850 °C and the strain rate range is between 0.001 and 0.01 s−1.  相似文献   

13.
Dominant phase during hot deformation in the two-phase region of Zr–2.5Nb–0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy in the temperature range of 700–925 °C and strain rate range of 10?2–10 s?1. Flow stress data of the single phase were extrapolated in the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated using calculated flow stress data in the two-phase range. Comparison of activation energies revealed that α phase is the dominant phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental results in terms of correlation coefficient (R) and average absolute relative error (AARE).  相似文献   

14.
In order to study flow stress behavior for hot working of a typical Al-Zn-Mg-Cu alloy, experimental stress-strain data obtained from isothermal hot compression tests at strain rates of 0.004, 0.04, and 0.4 s?1 and deformation temperatures of 400, 450, 500, and 520 °C were used to develop the constitutive equation. The peak stress decreased with increasing deformation temperature and decreasing strain rate. The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent-type equation. Employing an Arrhenius-type constitutive equation, the influence of strain has been incorporated by considering the related material constants as functions of strain. The accuracy of the developed constitutive equations has been evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. The results indicate that the proposed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant temperature range.  相似文献   

15.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

16.
In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s−1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s−1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.  相似文献   

17.
The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500 machine over deformation temperature range of 300-450 °C and strain rate of 0.01-10 s?1. The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy (TEM) and electron back scatter diffractometry (EBSD). The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters. The peak stress level, steady flow stress, dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate. Conversely, the high angle grain boundary area increases, the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs. The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state. The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 184.2538 kJ/mol. The constitutive equation and the hot processing map were established. The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from 380 to 450 °C and strain rate range from 0.01 to 0.1 s?1.  相似文献   

18.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

19.
The flow behavior of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermo-mechanical equipment. Compression tests were performed in the temperature range of 340-500 °C and in the strain rate range of 0.001-10 s?1.The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature, and decreases with increasing temperature at a given imposed strain rate. The relationship between flow stress and strain rate and temperature was derived by analyzing the experimental data. The constitutive equation of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation can be described by the Arrhenius relationship of the hyperbolic sine form. The values of A, n, and α in the analytical expression of strain rate are fitted to be 1.49 × 1010 s?1, 7.504, and 0.0114 MPa?1, respectively. The hot deformation activation energy of the alloy during compression is 150.25 kJ/mol. The temperature and strain rate have great influences on microstructure evolution of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation. According to microstructure evolution, the dynamic flow softening is mainly caused by dynamic recovery and dynamic recrystallization in this present experiment.  相似文献   

20.
The hot deformation behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy was investigated by isothermal compression test on a Gleeble–3500 machine in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s?1. The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature. Based on the experimental results, Arrhenius constitutive equations and artificial neural network (ANN) model were established to investigate the flow behavior of the alloy. The calculated results show that the influence of strain on material constants can be represented by a 6th-order polynomial function. The ANN model with 16 neurons in hidden layer possesses perfect performance prediction of the flow stress. The predictabilities of the two established models are different. The errors of results calculated by ANN model were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are 3.49% and 1.03%, respectively. In predicting the flow stress of experimental aluminum alloy, the ANN model has a better predictability and greater efficiency than Arrhenius constitutive equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号