首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在前期工作基础上,研究了经不同冷轧和时效处理的Al-0.2Sc-0.04Zr合金在300℃时的蠕变行为。发现合金的高温蠕变属于第二相粒子强化材料的蠕变,存在蠕变门槛应力,且冷轧和时效联合处理能进一步改善合金高温抗蠕变能力。虽然预时效+冷轧+再时效处理可获得更好的室温抗拉强度,但未经预时效的冷轧+时效处理却可获得好的高温抗蠕变性能。显微组织观察表明,Al-0.2Sc-0.04Zr合金抗蠕变性能的改善与晶粒细化和共格Al3(Sc,Zr)沉淀相的形成及分布有关。  相似文献   

2.
利用Yb部分替换Al-0.2Sc-0.04Zr合金中Sc,通过对其室温硬度、拉伸性能和电阻率测试,研究了Al-(0.2-x)Si-xYb-0.04Zr合金的力学性能和导电性能。结果表明,合金具有明显的时效强化行为。Yb含量为0.05%、0.10%和0.15%的合金峰时效温度在330℃附近,而不含Sc的Al-0.2Yb-0.04Zr合金峰时效温度在280℃;相应的峰时效态抗拉强度分别为155、140、104和85 MPa。Yb(部分)替代Sc虽然降低了Al-0.2Sc-0.04Zr合金的力学性能,但提高了其导电性。综合力学、电学性能,尤其是成本因素发现,Al-0.1Sc-0.1Yb-0.04Zr合金在耐热导电材料领域最具应用前景。  相似文献   

3.
研究了不同含量Yb部分替换Zr对热挤+冷轧态Al-0.2Sc-0.04(Zr,Yb)合金力学性能和导电性的影响。发现只有Yb含量为0.01%和0.02%的Al-0.2Sc-0.04(Zr,Yb)合金具有明显的时效强化峰,最佳时效温度在330℃左右。Yb含量为0.01%和0.02%的合金的屈服强度分别为188.1和177.5MPa,抗拉强度分别为212.9和207.3MPa。过量Yb替换Zr反而导致力学性能降低。冷轧能进一步提高合金导电性。综合结果表明,Yb含量为0.02%的Al-0.2Sc-0.04(Zr,Yb)合金兼具优良的力学性能和良好的导电性能。  相似文献   

4.
研究了Al-0.2Sc0.04Zr(0.01B)合金的时效行为和导电性.发现合金最佳时效温度为330℃,最佳时效时间为189min.热挤压并不能进一步提高合金的最佳强度水平,但能大幅提高合金的伸长率;添加B虽使合金最佳时效强度水平略有降低,但能改善均匀化状态合金的低温导电性.综台结果表明,挤压态Al-0.2Sc-0.04Zr合金具有最佳的力学性能和导电性,其抗拉强度为160 MPa,20℃时导电性相当于国际标准软铜的63%.  相似文献   

5.
研究了Al-xSc-0.04Zr(x=0,0.1,0.2、0.4)合金时效强化行为和导电性,发现只有当Sc含量高于0.2%时,合金才具有较小的晶粒尺寸和显著的时效强化效应.合金的最佳时效强化温度区间为280~380 ℃.在均匀化态,随着Sc含量的增加,Al-Sc-Zr合金电阻率增加,电阻温度系数降低;380 ℃时效导致合金电阻率显著降低.综合结果表明,Al-0.2Sc-0.04Zr合金最有可能成为新型超耐热铝合金导线材料,其时效后的屈服强度和抗拉强度分别为80和140 MPa,电阻率在20 ℃仅比高纯Al高2.6%,而且随着温度升高,该差别还会逐渐减小.  相似文献   

6.
采用电阻炉熔炼了Al-7.2Zn-2.2Mg-1.8Cu-0.2Zr和Al-7.2Zn-2.2Mg-1.8Cu-0.2Sc-0.2Zr两种铝合金,在700~720℃挤压铸造成形,并经过465℃×24h+475℃×8h水淬+120℃×24h时效热处理。结果表明,Sc、Zr的复合添加能明显细化α-Al基体和晶间第二相;通过多级固溶和时效处理,显著提高了合金的力学性能,铸件的抗拉强度达到613MPa,屈服强度达到528 MPa,伸长率为6%。  相似文献   

7.
戴晓元  夏长清  龙春光  彭小敏 《铸造》2007,56(9):991-994
采用铸锭冶金法制备了Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr、Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr和Al-9.0Zn-2.5Mg-1.2Cu-0.20Sc-0.15Zr三种合金,采用金相显微镜、扫描电子显微镜和透射电子显微镜,研究了三种合金铸态及不同热处理状态下的显微组织,测试了不同热处理状态下合金的力学性能。结果表明,Sc含量增加可以提高Al-Zn-Mg-Cu-Zr合金的抗拉强度和伸长率,Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr-0.20Sc经固溶和T6处理后,抗拉强度达到774.6 MPa,伸长率为8.3%。其作用机理主要为Sc含量增加,使合金中Al(3 Sc,Zr)引起的细晶强化、亚结构强化和弥散强化更进一步加强。  相似文献   

8.
制备了成分为Al-5Mg-(0.10~0.30)Sc-(0.05-0.15)Zr的合金,测试了其不同状态下的拉伸力学性能σb、σ0,2和δ,采用金相显微镜,透射电镜观察分析了其不同状态下的显微组织结构。结果发现:微量Sc、Zr的添加明显提高了Al-Mg合金的强度,细化了合金铸锭组织的晶粒尺寸,抑制了合金形变组织的再结晶,合金在热轧-冷轧后130℃3h退火得处理得到最佳力学性能,σb=406MPa,σ0.2=308MPa和δ=15%。  相似文献   

9.
试验研究了Sc和Zr复合微合金化对Al-4Cu-1.5Mg合金铸态显微组织与力学性能的影响规律。结果表明,复合添加微量Sc和Zr,有效改善了合金铸态微观组织,细化了合金晶粒,使粗大的树枝晶转变为均匀细小的等轴晶。当Sc、Zr含量分别为0.4%和0.2%时,合金的抗拉强度、屈服强度及伸长率分别为275.0MPa、176.0MPa和8.0%,与未添加合金元素的Al-4Cu-1.5Mg合金相比,抗拉强度提高了55.3%,伸长率提高了近3倍。  相似文献   

10.
采用活性熔剂保护熔炼、水冷铜模激冷铸造制备Al-5.8Mg-0.4Mn和Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr(质量分数,%)两种合金铸锭。合金铸锭经热轧中间退火冷轧成2 mm薄板;研究稳定化退火及微量Sc和Zr对Al-Mg-Mn合金组织与性能的影响。结果表明:在Al-Mg-Mn合金中加入微量Sc和Zr后形成大量弥散的Al3(Sc,Zr)粒子,这些粒子对位错和亚晶界具有强烈的钉扎作用,能明显提高合金的抗再结晶能力和室温力学性能;Al-Mg-Mn-Sc-Zr合金板材经300℃退火1 h后可获得最佳综合力学性能,其σb、σ0.2与δ分别为436 MPa、327 MPa和16.7%。  相似文献   

11.
在Gleeble-1500热模拟实验机上对Al-6Zn-2Mg-0.2Sc-0.1Zr合金进行等温压缩试验,建立了该合金在变形温度为350~500℃、应变速率为1~10 s-1条件下的热加工图。利用光学显微镜和扫描电镜观察了不同变形程度下合金的组织和热裂纹,确定了适宜的变形参数。结果表明:Al-6Zn-2Mg-0.2Sc-0.1Zr合金高温变形的峰值应力随变形温度的升高而降低,其适宜的热加工温度和应变速率范围为:T440℃,1.4 s-1ε3.5 s-1,单道次变形量小于60%。  相似文献   

12.
Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能   总被引:2,自引:1,他引:2  
通过金相、扫描电镜、透射电镜和X射线衍射仪以及拉伸性能和电导率测试,研究Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织性能。研究结果表明:含0.12%Sc的7000系铝合金铸态组织为细小的等轴晶;合金经强化固溶和T6处理后,抗拉强度σb达829.4MPa,伸长率δ为5.7%;合金经一般固溶及RRA处理后,σb为733.4MPa,δ为5.4%,电导率为37.6%。合金强化机理主要为Al3(Sc,Zr)引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

13.
通过力学性能测试、X射线衍射、扫描电镜及能谱分析等手段,研究了复合添加稀土元素Sc、Zr对Zn-43Al- 1.6Cu合金铸态显微组织及力学性能的影响.研究发现:在铸态Zn-43Al-1.6Cu合金中复合添加0.4%Sc、0.1%Zr时,合金显微组织细化效果较好,粗大的树枝晶转变为均匀、细小的团絮状组织,合金的抗拉强度达到372.3 MPa,伸长率提高了45.1%;稀土元素Sc、Zr与Zn-43Al- 1.6Cu合金中的Al形成了与α-Al基体晶格类型和晶胞尺寸都极为相近的复杂化合物Al3Sc粒子,促进异质形核,起到细晶强化的作用,从而提高了合金的力学性能.  相似文献   

14.
Ti-22Al-20Nb-7Ta合金的显微组织和力学性能研究   总被引:6,自引:0,他引:6  
研究了Ti-22Al-20Nb-7Ta合金的显微组织和力学性能,为优化合金的塑性(特别是室温塑性)和强度,采用了多种热机械处理(TMP)工艺.结果表明,合金显微组织与热机械处理工艺密切相关.通过热机械处理可有效地控制合金中α2,O和B2相的形貌,分布状况及相对含量进而获得了具有高的室温及高温屈服强度和优良塑性的O相合金.在(α2+B2+O)和(O+B2)相区热变形及在(O+B2)相区的固溶和时效处理获得的三相复合显微组织具有最佳的力学性能.Ti-22Al-20Nb-7Ta合金的室温屈服强度σ0.2达1200 MPa,延伸率达9.8%,650℃下σ0.2亦达970 MPa,延伸率达14%.  相似文献   

15.
通过差热分析和X射线衍射分析及硬度、拉伸性能和电导率测试,研究了热处理工艺对Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金组织及性能的影响.结果表明合金的峰值时效工艺为120℃×22 h;综合性能最佳的热处理工艺为120℃×22 h+180℃×30min+120℃×22 h的回归再时效处理(RRA).经RRA处理,合金的σb为733.4 MPa,δ为5.4%,电导率为37.6%IACS.  相似文献   

16.
添加微量Sc、Zr对超高强铝合金微观结构和性能的影响   总被引:1,自引:0,他引:1  
采用低频电磁铸造技术制备Al-9Zn-2.8Mg-2.5Cu-x Zr-y Sc(x=0,0.15%,0.15%;y=0,0.05%,0.15%)合金,借助金相显微镜、扫描电镜、透射电镜、力学性能测试等手段分别对其均匀化、热挤压态、固溶态和时效态的组织与性能进行对比分析。结果表明:添加微量Sc和Zr,会在凝固过程中形成初生Al3(Sc,Zr),可显著细化合金铸态晶粒;均匀化时形成的次生Al3(Sc,Zr)粒子可以强烈钉扎位错和亚晶界,有效抑制变形组织的再结晶,显著提高合金的力学性能。与不含Sc、Zr的合金相比,含0.05%Sc和0.15%Zr的合金经固溶处理和峰值时效处理后其抗拉强度和屈服强度分别提高172 MPa和218 MPa,其强化作用主要来自含Sc、Zr化合物对合金起到的亚结构强化、析出强化和细晶强化。  相似文献   

17.
采用铸锭冶金法制备了含稀土La的Al-Mg-Zr合金,通过金相显微镜、扫描电镜、能谱和X射线衍射及力学性能测试,观察分析了0.2%的La微合金化对Al-5Mg-0.2Zr合金微观组织和力学性能的影响。结果表明,在Al-5Mg-0.2Zr合金中添加0.2%的La能显著细化合金晶粒,合金的平均晶粒尺寸下降到68μm,同时有效地避免了Al3Zr析出相的粗化和偏聚,使合金抗拉强度、屈服强度及伸长率分别增加到了165.5MPa、112.5MPa和7.5%。  相似文献   

18.
采用选择激光熔化(SLM)技术在不同工艺参数下制备Al-4.77Mn-1.37Mg-0.67Sc-0.25Zr合金(质量分数,%),通过拉伸试验和显微观察研究合金的组织和力学性能。结果表明:当能量密度为104~143 J/mm3时,力学性能保持相对稳定;屈服强度为335~338 MPa,抗拉强度为397~400 MPa,伸长率均在11%以上。在此能量密度区间内,SLM合金缺陷和粗大金属间化合物较少,与此同时,有大量细小的Al Fe Mn Sc Zr相析出。当能量密度超过152 J/mm3时,可以观察到一些孔洞和裂纹,且伸长率急剧下降。定量计算结果表明,该合金固溶强化、晶界强化和析出强化占比分别为44%、41%和15%。  相似文献   

19.
制备了Al-4Mg-0.15Ti-0.15Sc-0.15Zr合金,并对该铝合金进行了4次重熔。利用SEM、EDS、XRD等技术研究了重熔对合金组织和力学性能的影响。结果表明:重熔前,Ti、Zr、Sc与Al反应形成了多层塔状的Al_3(Sc_(1-x-y)Ti_xZr_y)初生相,作为形核质点,细化了基体组织。随着重熔次数增加,晶粒尺寸增大,尺寸均匀性降低,该初生相晶粒细化效果逐渐减弱,合金力学性能降低。这归因于多次重熔后熔体内有效形核质点数量减少,塔状Al_3(Sc_(1-x-y)Ti_xZr_y)形核质点粗化,并变为碎块状。  相似文献   

20.
制备了成分Al-5.8Zn-2.5Mg-1.6Cu-0.2Cr和Al-5.8Zn.2.5Mg-1.6Cu-0.2Cr-0.23Sc-0.12Zr的两种合金。通过金相显微镜及电镜观察、力学性能及腐蚀性能测试,分析了两种合金不同处理状态的显微组织及其不同状态下的力学性能和腐蚀性能。结果表明,添加Sc、Zr能显著细化合金的铸态组织,对合金的力学性能及腐蚀性能也起到极大的提高作用。添加Sc、Zr的2#合金与1#合金相比较,经T6处理后,前者的抗拉强度提高110N/mm^2,屈服强度提高91N/mm^2,伸长率也略有提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号