首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaB6作为一种新型的热电材料,原料丰富且环保。以硼粉和氢化钙粉为原料,通过放电等离子烧结原位反应合成成功制备出了CaB6块体材料。第一性原理计算结果表明,CaB6呈现金属输运特性。试验结果表明,CaB6呈现n型金属输运特性。在373~773 K测试温度范围内,功率因子随着温度的升高呈上升趋势,从2.86×10-3 W·m-1 K-2增加到3.6×10-3 W·m-1 K-2,热导率随着温度的升高呈下降趋势,从11.63 W·m-1 K-1减小到9.06 W·m-1 K-1,其中晶格热导率占主导,且晶格热导率随温度的变化趋势与理论计算结果一致。在1 673 K制得的CaB6样品在773 K取得最大ZT值,达到0.34。  相似文献   

2.
成波 《热加工工艺》2012,41(10):100-102
利用放电等离子(SPS)烧结工艺制备Mn掺杂In2O3多晶陶瓷材料。通过测试热电传输性和观察微观结构,研究了掺杂工艺对SPS烧结多孔结构In2O3陶瓷传输性能的影响。结果表明,低浓度掺杂的样品在测试温度范围内能得到较高的电导率和热电势;掺杂试样In1.99Mn0.01O3在973 K可获得最高的热电功率因子4.0×10-4W.K-2.m-1,从而可知,控制In2O3中低浓度的Mn的掺杂量可获得较好的高温n型热电材料。  相似文献   

3.
(Na1-yMy)1.6 Co2O4(M=K,Ca,Sr)的制备及电学性能   总被引:2,自引:0,他引:2  
用溶胶凝胶法制备了NaCo2O4及(Na1-yMy)1.6Co2O4(M=K,0.05≤y≤0.35;M=Ca,Sr,0.10≤y≤0.40)的氧化物。研究结果表明:掺杂Ca、Sr的NaCo2O4样品的Seebeck系数都有一定提高;而掺杂K的NaCo2O4样品的Seebeck系数无明显提高,且掺K使NaCo2O4的功率因子降低;对NaCo2O4掺杂Ca的量0相似文献   

4.
采用溶胶-凝胶自蔓延合成工艺,以Gd3+作为掺杂离子,以(NH4)6Mo7O24·4H2O,H40N10O41W12·xH2O及La(NO3)3·6H2O为前驱体原料,合成了La2-xGdxWMoO9系(LGWMO,x=0,0.1,0.2,0.3)陶瓷粉体。通过放电等离子烧结技术(SPS)制备出LGWMO系高致密陶瓷材料,借助XRD、激光热导仪、热膨胀系数测试仪、SEM等分析技术对材料的物相组成、热扩散系数、热膨胀系数、微观形貌等性能进行表征;研究了Gd3+离子掺杂量对LGWMO系材料热导率、热膨胀系数的影响。结果表明:少量Gd3+的掺杂(x<0.1)能降低La2WMoO9陶瓷材料的热导率,但不利于La2WMoO9陶瓷热膨胀系数的提高;在Gd3+掺杂量x=0.1时,La1.9Gd0.1WMoO9陶瓷材料具有最佳的热物理性能:热导率λ=0.65W·m-1·K-1(T=298K);热膨胀系数αL=15.04×10-6K-1(T=1273K)。  相似文献   

5.
采用微波快速合成结合放电等离子(SPS)烧结技术,制备了不同Te掺杂量的Co_3Sb_(3-x)Te_x(x=0、0.4、0.5)样品。并对其进行物相组成、微观结构、电性能、热性能等表征分析。XRD图谱表明微波辐射时间4~5min可以合成高纯度的CoSb3化合物;通过SEM进行微观结构分析表明,采用微波快速合成能够得到晶粒尺寸1~10μm,结构致密,晶粒均匀的样品;电性能分析表明,Te的掺杂极大地降低了材料的电阻率,其中Co_3Sb_(2.5)Te_(0.5)室温时电阻率为4.98μΩ·m,在423~673K测试范围内功率因子1400~1800μW·m-1·K-2;热性能分析表明Te掺杂极大地降低了材料热导率,其热导率为4.4~5.2W·m~(-1)·K~(-1),晶格热导率仅为2.3~4.2W·m~(-1)·K~(-1),说明其具有良好的热性能。热电优值ZT在测室温度范围(283~773K)内随温度升高显著增大,最大值达到0.29。  相似文献   

6.
K+掺杂改性的Ca3Co4O9基氧化物热电性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法和放电等离子烧结(SPS)制备了层片状结构的(Ca1-xKx)3Co4O4陶瓷,烧结块体相对密度可达97%~99%.XRD(X-ray Diffraction)和SEM(Scanning Electronic Microscope)分析结果表明当K的掺杂量x<0.08时为单一的Ca3Co4O9相,SPS烧结可以使样品带有一定的织构取向.在室温至700℃的范围内测量了不同K掺杂量时样品电导率和Seeback系数,测试结果表明,当K的掺入量小于0.06时,随着掺入量的增加,可以显著提高样品的电导率(400℃~700℃)和Seebeck系数.其中,700℃时(K0.06Ca0.94)3Co4O9样品的功率因子P=4.43×10-4W·m.-1K-2,与Ca3Co4O9(P=3.51×10-4W.m.-1K-2)相比提高了26.2%,表明K掺杂是改善Ca3Co4O9高温热电性能的有效途径之一.  相似文献   

7.
研究了Y2O3,LiO2,CaO烧结助剂对AlN陶瓷常压烧结致密度和性能的影响.结果发现,同时添加Y2O3,LiO2,CaO作为助剂,在1600℃低温烧结就能获得具有高致密度、较小的晶粒尺寸(1μm~4μm)、较高的抗弯强度(331MPa)、断裂韧性(3.8 MPa·m1/2)及导热率(118 W·m-1·K-1)的AlN陶瓷.  相似文献   

8.
选用高纯的Bi粉、Se粉、Cu粉、CuO、CaO、NiO作为原材料,采用固相结合放电等离子烧结制备不同成分的样品,测试了不同成分样品从室温RT到823 K不同温度下热电传输性能。研究结果表明,通过在Bi位掺杂Ca、Cu位掺杂Ni,可以有效的调控材料的热电性能。Bi0.94Ca0.06Cu0.94Ni0.06Se O在823 K时,电导率达到最高值5300 S·m-1,远高于BiCuSeO的电导率1100 S·m-1。同时,样品具有较低的热导率(0.9~0.4 W·m-1·K-1)和较高的Seebeck系数(200~250μV·K-1)。Ca、Ni双掺BiCuSeO体系中Bi0.94Ca0.06Cu0.94Ni0.06Se O的热电优值(ZT)在823 K时达到最大值0.55。  相似文献   

9.
将制备的β-Si3N4晶种(添加剂为Yb2O3)加入到α-Si3N4起始原料中,经热压烧结获得试样.在相同的烧结条件下,与未添加晶种时的氮化硅相比,加入8%的晶种后氮化硅的热导率在各温度点高出3 W.m-1.K-1~5 W.m-1.K-1.随着温度的升高,两者的热导率均明显降低.当温度从室温升至1 200℃时,未添加晶种的氮化硅的热导率从36.2W.m-1.K-1下降到7.74 W.m-1.K-1;添加了晶种的氮化硅热导率从40.1 W.m-1.K-1下降到10.4 W.m-1.K-1.同时,利用XRD和SEM分别对热压试样的相组成和显微结构进行了分析.  相似文献   

10.
正Armad Ostovari M.等人采用高能球磨及随后热压方法制造Cu_(5-x)Co_xFeS_4(x=0,0.02,0.04,0.06,0.08,1)。XRD测定表明,x低于0.08时,试样是纯斑铜矿型结构,然而当x=0.1时,却含有少量Co3S4第二相。热压试样表面呈现纳米结构,粒径小于50nm。当x增高到0.04时,纳米结构的孔穴密度降低。由于Co2+置换Cu+,调整了电导率和塞贝克系数,使Cu4.96Co0.04FeS4的功率因子(590K)提高到0.3mW·m-1·K-2,比不含Co的Cu5FeS4高出20%。x=0.04时,热导率降低到0.22 W/(m·K)(473K温度),  相似文献   

11.
采用微波加热合成结合放电等离子体烧结制备了铁-镍双掺杂方钴矿Co_(3.8-x)Fe_xNi_(0.2)Sb_(12) (x=0.05, 0.10, 0.15, 0.20)块体材料,并对其物相组成、晶粒尺寸、元素分布、热电性能等进行了系统研究。X射线衍射分析表明,样品X射线衍射峰与单相CoSb_3相符;场发射扫描电镜分析表明,样品晶粒尺寸为1~3μm、平均尺寸为1~2μm,各元素均匀分布;电性能分析表明,Ni/Fe双掺杂对电输运性能有进一步改善,最高功率因子为2.667×10~3μW·(m·K~2)~(-1);热性能分析表明,Fe掺杂对晶格热导率影响较小,晶格热导率与晶粒尺寸有关,主要热输运机制为晶界散射,Co_(3.65)Fe_(0.15)Ni_(0.2)Sb_(12)的最小晶格热导率为2.8 W·(m·K)~(-1)。Co_(3.7)Fe_(0.1)Ni_(0.2)Sb_(12)在773 K获得最大热电优值0.50,显著高于传统方法制备的Ni/Fe单掺杂或者双掺杂样品。  相似文献   

12.
采用传统固相反应合成法制备0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3基无铅压电陶瓷,研究了烧结温度对0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3陶瓷相结构、显微组织和压电介电性能的影响。结果表明,在960~1060℃的温度区间内,所得到的一系列烧结样品在室温下均为纯的钙钛矿型结构,未观察到第二相出现;随着烧结温度的升高,晶粒的平均尺寸显示出先增大后减小的趋势,在1020℃时晶粒的平均粒径达到最大值3.5μm。电学性能分析表明,烧结温度为1020℃时,该体系陶瓷压电介电性能达到最优值:d33=245pC/N,kp=0.42,tanδ=0.03,ε3T3/ε0=640,Ec=2.1kV/mm,Pr=20μC/cm2。  相似文献   

13.
通过固相反应法合成了Gd2Zr2O7-SrZrO3 (GZSZ,Gd2Zr2O7:SrZrO3=7:3)复合陶瓷粉末,并采用喷雾造粒法和大气等离子喷涂法分别制备了适合等离子喷涂使用的相应喷涂粉末及涂层。使用X射线衍射、扫描电子显微镜对粉末和涂层的相组成、显微结构进行分析。借助激光热导仪、高温热膨胀仪对涂层的热扩散系数和热膨胀系数、烧结系数进行了表征。结果表明,制备的GZSZ复合陶瓷粉末和涂层都由Gd2Zr2O7和SrZrO3两相组成,粉末中的Gd2Zr2O7为烧绿石结构,而涂层中的Gd2Zr2O7为萤石结构,SrZrO3都为钙钛矿结构。制备态GZSZ涂层的孔隙率为~14%。GZSZ涂层1400℃热处理5 h后的热膨胀系数为(9.8~11.2)×10-6 K-1。制备态GZSZ涂层的热导率为~0.8 W·m-1·K-1,与制备态SrZrO3涂层的热导率~1.0 W·m-1·K-1相比降低~20%。1400℃热处理360 h后GZSZ涂层的热导率增加到~1.5 W·m-1.K-1。综上表明,GZSZ涂层是一种很有前景的复合陶瓷热障涂层材料。  相似文献   

14.
α-In2Se3是一类A2ⅢB3Ⅳ型宽带隙半导体材料。但在α-In2Se3化合物中共掺杂适量的Cu,Te后发现禁带宽度(Eg)变窄,Eg值由本征态时的1.32eV减小到1.14eV。掺杂后电学性能得到了大幅度的改善。最大功率因子由0.7610-4增大到2.810-4W·m-1·K-2;最大热电优值(ZT)从本征态时的0.25提高到0.63。高分辨电镜(HRTEM)观察结果表明,在未掺杂时,α-In2Se3呈现非晶状组织,共掺杂Cu,Te后,微结构则转变成明显的多晶组织。在温度高于500K时,掺杂后晶格热导率的适量提高与该微结构转变有直接联系。  相似文献   

15.
通过真空熔炼、球磨制粉、冷压成形和常压烧结制备具有高热电优值的p型SnxBi0.5-xSb1.5Te3热电材料。研究了Sn含量对SnxBi0.5-xSb1.5Te3热电材料晶体结构、微观形貌和热电性能的影响。结果表明:SnxBi0.5-xSb1.5Te3热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;添加合金元素Sn,Bi0.5Sb1.5Te3基热电材料产生大量的纳米结构缺陷。合金元素Sn含量增加, SnxBi0.5-xSb1.5Te3热电材料载流子浓度和DOS有效质量增加,有效地提高电导率和功率因子;同时声子散射增强,显著地降低晶格热导率。在300K时,Sn0.015Bi0.485Sb1.5Te3的功率因子达3.10 mW?m-1?K-2,晶格热导率为0.358 W?m-1?K-1,ZT值为1.25。并且在300~400 K温度范围内,Sn0.015Bi0.485Sb1.5Te3的ZT值为1.25~1.33。  相似文献   

16.
结合机械合金化(MA)与放电等离子烧结(SPS)工艺制备了NiSe_2块体热电材料。研究了MA球磨时间和SPS烧结温度对NiSe_2热电材料的物相、显微组织以及电热传输性能的影响。结果表明:当转速为425 r/min,球磨40 h后合成了约45 nm的NiSe_2纳米粉体。NiSe_2粉体是一种直接禁带半导体,禁带宽度为2.653 eV,其块体呈n型导电特征。烧结温度为773 K时,NiSe_2块体材料在323 K获得最大功率因子101μW·m~(-1)·K~(-2),热导率为7.5 W·m~(-1)·K~(-1),最大ZT值为0.0045。  相似文献   

17.
利用相图计算的CALPHAD方法和超音雾化制粉技术,在CuFeCoCr体系中设计并制备了一系列微米级复合粉体。通过热压烧结方法在烧结温度为950℃,烧结压力为45 MPa的工艺条件下成功获得块体复合材料。研究了块体复合材料中Cu含量对显微组织,热导率,热膨胀系数以及显微硬度的影响。结果表明:CuFeCoCr块体复合材料均由fcc富铜相和fcc富铁钴铬相组成。该系列复合材料经600℃时效处理8 h后,其热膨胀系数变化范围为5.83×10-6~10.61×10-6 K-1,热导率变化范围为42.17~107.53 W·m-1·K-1。其中Cu55(Fe0.37Cr0.09Co0.54)45复合材料表现出良好的综合性能,即其热膨胀系数和热导率分别为9.08×10-6K-1和91.09 W·m-1·K-1,与电子封装半导体材料的热膨胀系数相匹配。  相似文献   

18.
采用固相合成制备了热障涂层陶瓷材料La2(Zr0.7Ce0.3)2O7(LZ7C3)。通过差热分析、X射线衍射等分析方法对固相合成行为影响因素进行研究,并用激光脉冲法和高温膨胀仪测试了LZ7C3粉末的热扩散系数和热膨胀系数。结果表明:完全合成LZ7C3的温度至少1400℃,煅烧时间至少5 h,反应粉末的粒度为0.82μm时,合成的LZ7C3粉末X射线衍射图谱没有La2 O3残留峰,其La∶Zr∶Ce为50.09∶35.12∶14.79,非常接近理论原子比例10∶7∶3;LZ7C3的热导率在1200℃时为0.79 W.m-1.K-1,热膨胀系数在1200℃时为11.6×10-6K-1,从室温到1200℃的加热过程中没有失重和相变发生,具有较高的相稳定性。  相似文献   

19.
娄本浊 《热加工工艺》2012,41(14):180-182
利用射频磁控溅镀法在SiO2/Si基板上制备了Bi0.5Sb1.5Te3薄膜样品,并且测量了薄膜样品在不同退火时间与退火温度下的热电性质。结果表明,薄膜样品经30 h退火后的热电性质与1 h退火后的热电性质相差不大,这说明长时间退火并不是Bi0.5Sb1.5Te3薄膜的最佳退火时间。而在不同退火温度下,样品的塞贝克系数在275~300℃退火下降比较快,当退火温度为300℃时降至最小,约为181μV/K;而其电阻率则随退火温度的升高呈现出先减小后增大的趋势,退火温度为225℃时具有最小的电阻率,约为6.1 mΩ.cm。最后本文得出经225℃退火10 min后可得到最佳的热电性质,即薄膜样品的塞贝克系数为208μV/K,电阻率为6.1mΩ.cm,功率因子则为6.9×10-4W/(m.K2)。  相似文献   

20.
在In C O体系中存在C(graphite) ,CO(g) ,CO2 (g) ,O2 (g) ,In(l) ,In(g) ,In2 O(g)和In2 O3 (s)等物种 ,反应体系的独立反应数为 5。用Mathematica程序求得部分反应的ΔG ,热力学计算得到 773~ 2 0 0 0K各气相分压与温度的关系 ,In2 O3 还原挥发的最低温度是 10 30K ,当T >974K时 ,In2 O3 更容易被C还原 ,还原为In比还原为In2 O容易。结果表明 :In2 O3 还原挥发物的主要成分是In(g)和In2 O(g) ,当 773K pIn2 O;升高温度对氧化铟的还原挥发有利 ,pO2 对 peff的影响并不显著  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号