首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
X100管线钢的工艺控制   总被引:2,自引:2,他引:0  
利用热模拟、扫描电镜、透射电镜等分析手段研究了控轧工艺和冷却制度等对X100管线钢微观组织和显微硬度的影响。结果表明:在820℃变形时,随变形量增加,试验钢中板条贝氏体比例减少,粒状贝氏体比例增加,组织逐渐细化,显微硬度明显下降;400℃终冷时,随冷却速度的增加,粒状贝氏体组织逐渐细化,马奥岛数量减少,颗粒尺寸减小,显微硬度增加;在600~350℃范围终冷时,随终冷温度降低,贝氏体组织细化,马奥岛体积分数减少,颗粒尺寸减小,终冷温度降低到300℃时,组织中出现了大量硬相的板条贝氏体组织;显微硬度随着终冷温度的降低而增加。  相似文献   

2.
利用实验室热模拟试验机Gleeble3500模拟Q345B钢轧制过程,并控制轧后的冷却速度,通过分析金相组织和膨胀曲线研究控轧控冷对组织的影响.结果表明,随着冷却速度增加,相变温度下降,不同冷却速度下组织差异较大;当冷却中间保温温度低于600℃,将得到了铁素体+珠光体+少量贝氏体组织,当冷却中间保温温度大于620℃,将得到细小铁素体+珠光体组织.  相似文献   

3.
研究了TC4钛合金在不同保温温度和冷却速度下热处理后的显微组织及硬度。结果表明,在970 ℃保温冷却后,由于温度稍低于相转变温度,α相并没有完全转变为β相,冷却后的组织仍有初生α相。在1020 ℃以上加热保温后,炉冷和空冷时由于冷却速度较慢,转变生成的α相比较粗短且排列紧密,冷却速度越慢α相越粗大;油冷和水冷下主要获得片状和针状马氏体组织。TC4钛合金的硬度随着冷速的增加而增加,但增加幅度不大。在1020 ℃以上保温时,温度对硬度没有明显的影响。  相似文献   

4.
研究应变速率和变形温度对具有初始片状α相的47Zr-45Ti-5Al-3V合金在热变形过程α→β相转变的影响。结果表明,当变形温度为550°C时,α相的体积分数随应变速率的增加而降低;而当变形温度为600和650°C时,随应变速率从1×10~(-3) s~(-1)增大到1×10~(-2) s~(-1),α相的体积分数先增加到一个最大值,随后随应变速率的增加而逐渐下降;当变形温度为700°C时,整个变形过程中合金组织由单一β相组成。在一个给定的应变速率条件下,α相的体积分数随着变形温度的增加而降低。随着应变速率的降低和变形温度的增加,球状α相的体积分数和尺寸逐渐增加。当变形温度达到650°C和应变速率降低到1×10~(-3) s~(-1)时,片状α相完全转变为球状α相。α相的体积分数及形貌随应变速率和变形温度的变化显著影响合金的硬度。  相似文献   

5.
采用MMS-300热/力模拟试验机研究了"水冷+保温+淬火"冷却模式下工艺参数对C-Mn双相钢铁素体体积分数的影响,并进行了实验钢的热轧实验。结果表明,随着变形后冷却速度的提高,铁素体体积分数逐渐减少;随着保温温度的降低,铁素体体积分数先增大后减少,当保温温度为700℃时,铁素体体积分数最高;随着保温时间的延长,铁素体体积分数逐渐增加;采用低C低Mn的成分设计,结合高温轧制+超快冷技术在实验室生产出DP540级热轧双相钢。  相似文献   

6.
《铸造技术》2017,(2):301-303
研究高强度建筑双相钢在不同冷却速度下的组织及性能变化。首先确定试样的临界冷却速度,然后将试样升温至800℃,保温后分别以10、20、30和40℃/s的速度冷却至350℃,观察各阶段试样金相组织,在万能试验机上测试不同冷却速度下试样的力学性能。结果表明,冷却速度为10℃/s时,双相钢中软基体体积分数大,抗拉强度和屈服强度都较低。随着冷却速度增大至20、30和40℃/s时,抗拉强度和屈服强度逐渐增大,但是变化范围不大。  相似文献   

7.
本文采用温度采集装置测定了Mg-8Gd-1Er(GE81)合金在石墨型炉冷、石墨型空冷、铁型空冷、铜型空冷四种不同冷却方式下的平均冷却速度,基于经典形核理论分析了晶粒密度与冷却速度的关系;利用金相显微镜和扫描电镜观察了不同冷却速度下合金的铸态显微组织,分析了晶粒密度、第二相体积分数及硬度与冷却速度的关系。研究结果表明:合金在不同冷却方式下的平均冷却速度分别为0.23,0.46,2.17,3.88 K·s-1,冷却速度与过冷度为线性关系:?T=13.5664v+6.9655;随冷却速度增加,晶粒明显细化,晶粒密度与冷却速度的关系为:Nv=1.1135×1012exp(-46.8344/(13.5664v+6.9655));此外,第二相体积分数减小,分布更加细小均匀,合金硬度明显增大,硬度与冷却速度的关系为:HV=72.1772-12.6895/(1+exp(v-2.2570))。  相似文献   

8.
轧辊用新型高速钢特征温度下碳化物的析出动力学   总被引:1,自引:0,他引:1  
采用示差扫描量热仪(DSC)测量了轧辊用新型高速钢材料不同类型碳化物的析出温度,并采用场发射扫描电镜(FESEM)观察其典型形貌和测定其相结构.在各特征温度下,分别对轧辊用新型高速钢保温15、20、25和30 min后快冷,采用金相统计软件对碳化物的体积分数进行了统计.结果表明:轧辊用高速钢在1300℃的温度快冷后,保温25 min时MC相的体积分数有最大值;1220 ℃快冷后MC和M2C相的体积分数均在保温20 min时有最大值;1150℃快冷后MC的体积分数一直增加,M2C的体积分数在保温20 min时有最大值,25 min时有最小值,而M6C的体积分数先增加后减少,保温20 min时有最大值.  相似文献   

9.
利用差示扫描量热分析仪(DSC)对Pb-Bi包晶合金的凝固过程进行了差热分析研究,确定了不同成分的Pb-Bi合金的固、液相线温度和初生相析出及包晶反应的温度。同时通过分析DSC曲线和凝固组织获得了不同成分的合金在不同的冷却速率下初生α相的形核过冷度及其体积分数,以及初生α相和包晶β相的结晶潜热。结果表明,初生α相的形核过冷度随着合金成分和冷却速率的增大而增大,其体积分数与结晶潜热却随合金成分的增加而减小,随冷却速率的增加而增大,包晶β相的体积分数与结晶潜热则与初生相的变化规律相反。  相似文献   

10.
应变诱发AZ91D镁合金半固态组织形态及形成机理   总被引:12,自引:2,他引:12  
采用应变诱发方法制备了AZ91D镁合金半固态材料。考察了变形率、温度、保温时间对固相体积分数、组织形态以及晶粒尺寸的影响。结果表明:在冷变形条件下.于570℃保温一定时间后。可制备出固相体积分数最小达55%的镁合金半固态材料。分析讨论了AZ91D镁合金半固态组织的形成机理。在热处理过程中,组织发生再结晶,而冷变形程度对再结晶的组织有显著影响。  相似文献   

11.
采用Gleeble-1500D热模拟试验机,在变形温度分别为850、900、930、950 ℃,变形量为30%、50%、70%的条件下对一种与BGRE钢相近的GGX-G试验用重轨钢进行热模拟试验和不同分阶段冷却工艺试验,采用光学显微镜(OM)和扫描电镜(SEM)观察变形温度和变形量对重轨钢组织和珠光体片层间距的影响。结果表明:在变形温度一定时(850 ℃、900 ℃),珠光体片层间距随着变形量的增大而减小,并且所有试样的片层间距能细化到50~80 nm;当第一阶段冷速V1=5 ℃/s,第二阶段冷速V2=2 ℃/s,并在第一阶段冷却过程中于650 ℃保温3 min时,钢轨的珠光体片层平直,片层间距能达到74.8 nm。  相似文献   

12.
采用 Gleeble-3800热模拟试验机对EH460船板钢进行1050 ℃下变形30%和850 ℃下变形30%的双道次压缩试验。绘制了在不同冷速下连续冷却过程中钢的膨胀曲线,并在光学显微镜下观察了不同冷速下试样的室温组织。结合膨胀法与金相法,利用 Origin 8.0软件绘制了船板钢的动态 CCT 曲线。结果表明,当冷速为0.1~3 ℃/s 时,所得室温组织主要是铁素体和珠光体;当冷速大于5 ℃/s 时,出现粒状贝氏体组织,随着冷速的增加贝氏体逐渐增多,铁素体与珠光体逐渐减少;当冷速为10~15 ℃/s 时,珠光体消失,组织为铁素体与粒状贝氏体;随着冷速进一步增到 20~50 ℃/s 时不再发生铁素体相变,仅为粒状贝氏体组织。  相似文献   

13.
在Gleeble-3500热模拟试验机上对欧标R350HT钢轨钢进行不同冷却速度的热模拟试验,观察显微组织并测量硬度,绘制试验钢的连续冷却转变(CCT)曲线。结果表明,在冷却速率为0.5~2.5 ℃/s时,组织以珠光体为主,有少量先共析铁素体。当冷却速度为3 ℃/s时,组织中出现马氏体。由于珠光体轨钢中不允许有马氏体组织,因此冷却速度应小于3 ℃/s。同时,随着冷却速率的增大,直至10 ℃/s,珠光体开始转变温度降低,这是因为随着冷却速率的增大,在高温区停留时间缩短,珠光体转变来不及发生,并且发生珠光体相变需要较大的过冷度。随着冷却速率增加至20 ℃/s,组织基本上为马氏体。当冷速大于20 ℃/s后,组织为单一马氏体。因此,马氏体临界转变冷速为20 ℃/s。  相似文献   

14.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

15.
王彬  魏宝民 《轧钢》2022,39(3):37-42
冷轧后退火处理是冷轧板带生产中的重要工序。利用Gleeble-3500热模拟机对0.35 mm薄规格SPCC冷轧带钢在不同退火制度下显微组织及其再结晶行为进行了研究;基于JMAK模型,建立了SPCC钢再结晶动力学模型。结果表明:SPCC带钢退火温度为540 ℃时,保温过程以铁素体回复为主,铁素体再结晶体积分数为10.52%;退火温度为560~640 ℃时,铁素体发生再结晶及晶粒长大,再结晶体积分数达97.38%~99.39%。相同退火温度下,铁素体再结晶体积分数与保温时间呈指数关系,在短时间保温条件下,铁素体没有足够时间再结晶,其组织为典型冷轧纤维状组织;再结晶基本完成后,微观组织趋于稳定,保温时间延长有利于再结晶晶粒的继续长大。此外,随着退火温度的升高,达到相同再结晶体积分数所需要的时间明显缩短。  相似文献   

16.
对TC4合金进行不同固溶处理,研究了固溶温度、保温时间、冷却方式对合金显微组织和硬度的影响。结果表明,随着固溶温度的升高,TC4合金由等轴组织到双态组织再到全马氏体组织转变,硬度逐渐增加;达到高温平衡状态时,延长保温时间对TC4合金显微组织和硬度的影响不明显;当固溶温度分别为925 ℃和975 ℃时,随着冷却速率的降低,α相在冷却过程中发生扩散长大,β转变组织从α'马氏体变为次生α相+β相的片层组织,硬度分别从水冷条件下的359~389 HV0.2降为空冷条件下的318~327 HV0.2;炉冷后得到全等轴组织,硬度较低,约300 HV0.2。  相似文献   

17.
利用热膨胀相变仪研究了不含Cr和含0.3%(质量分数)Cr的叉车门架用20MnSiV钢的连续冷却转变行为,通过光学显微镜观察试验钢在不同冷速下的显微组织,并检测其维氏硬度,得到了试验钢的动态连续冷却转变(CCT)曲线。结果表明,0.1~10 ℃/s的冷速范围内,试验钢在添加0.3%Cr后,贝氏体转变的临界冷速降低,综合力学性能提高,但易在偏析严重区域生成贝氏体和马氏体混合相,使-20 ℃低温冲击性能稳定性下降。通过采取末端电磁搅拌、降低终轧温度、加大末道次变形量、减小轧件空冷间距等措施,能够消除成品异常显微组织,提高低温冲击稳定性。  相似文献   

18.
H13E钢是通过调整合金元素对H13钢进行了一定的改性,研究了淬火工艺对H13E钢显微组织及力学性能的影响。结果表明:随着淬火温度的升高,奥氏体晶粒尺寸单调增加,从1020 ℃升高至1080 ℃时,平均奥氏体晶粒尺寸增长了约40 μm;硬度在1060 ℃达到最大值,为61.6 HRC,相较于传统H13钢硬度高3~5 HRC,同时冲击吸收能量可达16 J以上。当保温时间在20~50 min时,奥氏体晶粒增长速率较缓慢,平均奥氏体晶粒尺寸仅增长7 μm左右,同时硬度仅下降0.2 HRC左右。相同条件下油冷后H13E钢马氏体更细小,力学性能优于空冷后的H13E钢。考虑综合力学性能,H13E钢较佳淬火工艺为:1060 ℃保温20~30 min,油冷。  相似文献   

19.
采用相变仪DIL805A/D将X80、X100管线钢空心微缩管状试样,以200℃/s加热至1 350℃,保温10 s后以1~200℃/s的不同速度冷却至室温,在分析显微组织、硬度和相变温度的基础上获得两种管线钢的粗晶区SHCCT曲线。对比发现,随着冷却速度的增加,X80与X100的相变温度均降低,而硬度都增加;在相同冷却速度下,X100的相变温度明显低于X80,硬度却更高。对于X100管线钢,当v10℃/s时,粗晶区为GB、QF和M-A组元的混合组织;当10℃/s≤v≤50℃/s时,组织由GB、BF和M-A组元组成;当v50℃/s时,出现LM组织,当v100℃/s后转变为LM和M-A组元的混合组织。而X80管线钢只有当v≥25℃/s时才出现BF,v100℃/s时开始出现LM组织。  相似文献   

20.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号