首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   4篇
金属工艺   11篇
无线电   4篇
一般工业技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
排序方式: 共有23条查询结果,搜索用时 203 毫秒
1.
利用宏观形貌分析、显微组织分析和力学性能测试等方法,对某无缝钢管厂生产的高铬白口铸铁球形顶头的失效进行了分析。分析表明,球形顶头畸变和开裂失效主要是由其组织中存在较多的缩孔和微裂纹缺陷,共晶碳化物呈粗大网状分布,Cr、Si含量过高且存在一定的成分偏析,高温组织稳定性较差等原因引起。同时提出了相应的改进措施建议。  相似文献   
2.
采用XRD及SEM研究(Ca0.61Nd0.26)TiO3对微波介质陶瓷Ba4Sm9.33Ti18O54的结构和微波介电性能的影响。获得了一些性能较好的微波介质陶瓷(1–x)Ba4Sm9.33Ti18O54-x(Ca0.61Nd0.26)TiO3,其微波介电性能如下:εr=75,Q·f为8985GHz,τf为–8.2×10–6℃–1(x?=0);εr为75,Q·f为9552GHz,τf为–14.4×10–6℃–1(x?=0.2)。  相似文献   
3.
4.
采用电弧熔炼制备了AlCrCuFeNbxNiTi (x = 0, 0.25, 0.5, 1.0)高熵合金,研究不同Nb含量对AlCrCuFeNbxNiTi高熵合金显微组织和力学性能的影响。研究表明:AlCrCuFeNbxNiTi (x = 0, 0.25, 0.5, 1.0)高熵合金物相主要包含有序FCC的L21相和Laves相,还有少量的BCC(A2)和FCC相;Nb元素的添加能促进Laves相的生成且对Cu元素的偏析具有一定的抑制效果;通过相判据参数计算找到了适合AlCrCuFeNbxNiTi高熵合金的相形成判据;添加适量的Nb元素能够改善AlCrCuFeNiTi六元高熵合金的力学性能;AlCrCuFeNb0.5NiTi 高熵合金具有较好的综合力学性能,抗压强度达到1587.4 MPa,硬度达到568.8 HV;Nb元素含量过高时会形成过多的Laves相使合金表现出过早脆化现象。  相似文献   
5.
超级电容器具有比电容高、循环寿命长和绿色无污染的特点,其优异的电化学性能备受关注。本文水热合成了NiMoO4/g-C3N4复合粉体,并将粉体涂覆在泡沫镍上制备了NiMoO4/g-C3N4电极材料。结果表明,NiMoO4/g-C3N4粉体形貌主要为NiMoO4纳米棒和团状g-C3N4,且NiMoO4纳米棒生长在g-C3N4纳米片上。在NiMoO4中加入30at%的g-C3N4能降低电容体系的等效串联电阻和扩散阻抗,有利于氧化还原反应的进行。相比于其他g-C3N4含量的电极材料,g-C3N4含量为30at%的NiMoO4/g-C3N4电极材料具有更高的比电容(584.3F/g)和更好的倍率特性。  相似文献   
6.
随着现代移动通信的飞速发展,高介电常数微波介质陶瓷得到了极大的发展,并广泛应用于微波谐振器、滤波器、介质基板、移相器等微波元器件。本文综述了高介微波陶瓷之一的新型钨青铜型高介微波陶瓷近几十年来的研究进展,并展望了其发展趋势。  相似文献   
7.
采用高能球磨和真空烧结技术制备了纳米SiC颗粒弥散增强WC-10Ni硬质合金复合材料,研究了SiC添加量和烧结温度对SiC掺杂WC-10Ni硬质合金复合材料显微组织和室温力学性能的影响。结果表明,采用真空烧结技术于1450和1500℃下烧结可获得烧结颗粒结合良好,致密度高达99.2%的WC-10Ni-SiC复合材料。SiC的添加不仅可以抑制WC晶粒的长大,起到细化晶粒的作用,还可促使WC晶粒烧结致密化。而且所获得的复合材料的维氏硬度随着SiC含量的增加而提高,最高达16.49GPa;断裂韧性和抗弯强度随着SiC添加量增加均呈现先升高后降低的趋势,当SiC添加量为0.5%时(质量分数,下同)可获得断裂韧性和抗弯强度分别为12.7MPa·m1/2和1126.1MPa的WC-10Ni-SiC硬质合金复合材料。  相似文献   
8.
采用固相法制备了Cata4Ti4O15系微波介质陶瓷.研究了不同预烧温度对CaLa4Ti4O15陶瓷烧结特性和微波介电性能的影响.在1 200℃预烧caLa4Ti4O15粉末.除CaLa4Ti4O15主相外,还存在部分CaTiO3,La2Ti2O7和La2TiO5混合相.在1 300℃和1 400℃预烧后.获得了六方类钙钛矿CaLa4Ti4O15单相.CaLa4Ti4O15粉末预烧后可饶结成高致密陶瓷(相对密度约97%),同时具有高机械品质因数与谐振频率的乘积(Q×f)值和近零谐振频率温度系数(Tf).1 550℃烧结的CaLa4Ti4O15陶瓷具有优异的微波介电性能:相对介电常数εr=45.1,Q×f=46087GHz,tf=-14.1 × 10-6/℃(预烧温度1 200℃);εr=-45.9,Q×f=48871GHz,tf=-14.4 ×10-6/℃(预烧温度1 300℃).  相似文献   
9.
高熵氧化物陶瓷由于独特的结构及新奇的“高熵效应”而表现出优异的性能。为制得高灵敏度和高稳定性的NTC热敏电阻,采用固相反应法制备了(FeCoCrMnZn)3O4高熵热敏陶瓷,研究制备工艺对其物相组成、显微结构和电学性能的影响。结果表明:(FeCoCrMnZn)3O4粉体在900℃煅烧即可形成尖晶石结构的单相固溶体,(FeCoCrMnZn)3O4陶瓷中各元素均匀分布,符合高熵化特征,其室温电阻率高达142.5 kΩ·cm,热敏常数B值高达4487 K,而电阻漂移率仅为1.22%(1425℃,4 h)。总之,(FeCoCrMnZn)3O4高熵热敏陶瓷具有良好的NTC特性,较普通NTC热敏电阻而言,具有更高的电阻率、B值及稳定性,可用于抑制大功率电器产生的浪涌电流及温度的检测和控制等。  相似文献   
10.
随着通信行业的发展,尤其是5G商用时代的来临,微波介质陶瓷的开发与探索成了近年来的研究热点.目前通常采用常压固相烧结的方式来制备微波介质陶瓷,但烧结温度较高、加热速度慢,且烧结时间过长,不仅会导致资源的损耗,还可能导致晶粒的异常长大.为了降低陶瓷材料的烧结温度,通常会添加烧结助剂,如B2 O3、CuO等,但加入烧结助剂会引入第二相从而影响微波介电性能.作为一种高效的烧结方法,微波烧结技术是在烧结过程中通过微波与材料粒子的相互作用或微波与基本微观结构耦合产生的热量进行加热,不仅能降低烧结温度、缩短烧结时间,还能改善材料的显微组织,因此,近年来微波烧结成为研究者关注的焦点.采用微波烧结制备的微波介质陶瓷在各个领域中都有应用,如Mg2 TiO4陶瓷用于多层电容器和微波谐振器,BaTiO3陶瓷用于多层陶瓷电容器(MLCC)和随机存取存储器(RAM),MgTiO3陶瓷用于微波滤波器、通信天线和微波频率全球定位系统,TiO2陶瓷用于电容器和低温共烧陶瓷基板等.不仅如此,采用微波烧结制备的微波介质陶瓷还表现出优异的化学稳定性和力学性能,如LiAlSiO4基陶瓷、MgO-B2 O3-SiO2基陶瓷等在多层陶瓷基板与微波集成电路中都有广泛的应用.微波烧结技术为制备优异的材料提供了可能,还可用于在各种粉末的制备,实现性能的进一步提升.本文综述了微波烧结制备微波介质陶瓷的研究进展,总结了常规烧结和微波烧结对材料性能的影响,并指出采用微波烧结制备的微波介质陶瓷目前存在的问题与发展趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号