首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用中频感应熔炼炉制备球墨铸铁,采用淬火-配分的方法进行热处理,通过X-ray衍射仪、光学显微镜、场发射扫描电镜和硬度计分别研究了淬火温度对球墨铸铁的微观结构和力学性能的影响。结果表明:不同淬火温度下所有试样都含有马氏体和残余奥氏体;随着淬火温度升高,球墨铸铁中残余奥氏体的含量呈现非单调变化,先增加后减小,在淬火温度为200℃时,残余奥氏体的含量达到最大值,约为27.1%;而残余奥氏体中碳含量与残余奥氏体含量呈现相反的变化,随淬火温度的升高,在180~220℃范围达到最低值;硬度试验结果表明,未经配分处理的试样的硬度明显大于配分时间为30 min的试样的硬度;随淬火温度增加,相同配分时间制备的球墨铸铁硬度呈下降的趋势。  相似文献   

2.
研究了不同温度(950、1000、1050℃)淬火+250℃回火处理对中碳低合金耐磨钢ZG35Cr2NiMoVTi显微组织、硬度、韧性、冲击磨料磨损耐磨性能的影响。结果表明:中碳低合金耐磨钢淬火组织主要为板条状马氏体+片状马氏体+少量残余奥氏体,回火组织为回火马氏体。随着淬火温度的增加,钢的硬度逐渐下降;冲击韧性随着淬火温度的升高先增加后保持稳定。在冲击功为1J的磨损工况下,950℃水淬+250℃回火处理试样耐磨性最好;在冲击功为4.5J的磨损工况下,1000/1050℃水淬+250℃回火处理的试样耐磨性最好。  相似文献   

3.
对一种中碳低合金超高强钢进行直接淬火到马氏体区等温处理,采用场发射扫描电镜和X射线衍射仪等设备研究了等温温度对组织和力学性能的影响。结果表明:随等温温度升高,抗拉强度不断降低,屈服强度先降低后升高,冲击功先增加后降低,伸长率略有增加。在260℃等温处理,实验钢具有最好的综合力学性能,抗拉强度1600 MPa,伸长率13.8%,-20℃冲击功24 J。不同等温处理后组织均包含初生马氏体、新生马氏体和残余奥氏体。随等温温度升高,残余奥氏体含量先增加后降低,在260℃等温处理残余奥氏体含量最大,为9.3%。在300℃等温处理,组织中出现了尺寸较大的块状新生马氏体,导致韧性降低。  相似文献   

4.
采用自制的WM-1型滚动磨损试验机研究了高钒高速钢经900~1 100℃淬火后550℃回火及1100℃淬火后250~550℃回火时的滚动磨损性能,并利用SEM对其显微组织进行了分析。结果表明:550℃回火条件下,低温淬火时基体组织以回火马氏体为主,随着淬火温度升高,残余奥氏体含量升高,马氏体含量相对减少,而耐磨性随淬火温度升高逐渐升高;1 100℃淬火条件下,低温回火时基体组织主要以残余奥氏体为主,随着回火温度升高,残余奥氏体量减少,而其耐磨性随回火温度的升高逐渐升高,达到一定值后开始降低。以耐磨性为评价标准,最佳热处理工艺为:1050℃淬火,450℃或550℃回火;研究结果揭示了适量的残余奥氏体有利于提高滚动磨损性能。  相似文献   

5.
以传统的淬火-回火试样作对比,研究了3种奥氏体化温度处理后淬火-配分中碳Fe-0.4C-1.5Mn-1.5Si钢试样的干滑动摩擦磨损性能。结果表明,860和1000℃全奥氏体化处理的2种淬火-配分试样中残余奥氏体的含量相近(体积分数分别约为14.37%和13.79%),其内的C浓度较高(质量分数分别为1.37%和1.38%),机械稳定性较强。在恒定低载荷(50 N)和恒定低滑动速率(40 mm/s)条件下,摩擦过程中不易诱发马氏体相变,导致2种试样的耐摩擦磨损性能均很低。受显微组织细化影响,奥氏体化温度较低的试样具有更高的耐磨性。当奥氏体化温度降低到800℃时,获得临界淬火-配分试样。显微组织分析表明,该试样中不仅包含少量的铁素体(体积分数约6.75%),而且存在最高含量的残余奥氏体(体积分数约22.28%),使得在4组试样内的显微硬度最低。但由于低的C浓度(质量分数约1.06%),残余奥氏体的机械稳定性较弱,在摩擦过程中易诱发马氏体相变,不仅贡献额外的硬化,而且马氏体相变体积膨胀引起的材料表面层压应力对提高耐磨性也有利,由此导致临界淬火-配分试样表现出最好的耐磨损性能。因此,在给定的摩擦参数条件下,残余奥氏体对马氏体钢耐磨性的影响主要决定于其在摩擦过程中是否能经相变而引起附加的硬化作用。  相似文献   

6.
研究了亚温淬火温度对30CrMnSi钢力学性能的影响,并对其显微组织进行了观察。结果表明,亚温淬火后,显微组织为细板条马氏体+弥散铁素体+残留奥氏体;硬度和抗拉强度随亚温淬火温度的升高而增加,冲击韧性先升高后降低,磨损量先减少后增加,在825℃亚温淬火时具有最佳的力学性能。  相似文献   

7.
对GCr15轴承钢摆线轮在不同温度淬火及低温回火后的组织、物相和硬度进行分析,通过摩擦磨损试验机和激光共聚焦显微镜对其摩擦磨损性能进行测试和表征。结果表明:经不同温度淬火及低温回火后,试样的组织主要由马氏体、碳化物和残留奥氏体组成。随着淬火温度的升高,试样中碳化物的平均尺寸和体积分数逐渐减小,马氏体含量也逐渐减少,而残留奥氏体含量逐渐升高,硬度先升高后降低;试样的摩擦系数与磨损率随淬火温度的升高先减小后增大,磨损机制主要为磨粒磨损,当淬火温度为840℃时,试样的磨损最轻微,耐磨性能最佳。  相似文献   

8.
采用自制的WM-1型滚动磨损试验机研究了高钒高速钢经900-1100℃淬火后550℃回火及1100℃淬火后250~550℃回火时的滚动磨损性能,并利用SEM对其显微组织进行了分析。结果表明:550℃回火条件下,低温淬火时基体组织以回火马氏体为主,随着淬火温度升高,残余奥氏体含量升高,马氏体含量相对减少,而耐磨性随淬火温度升高逐渐升高;1100℃淬火条件下,低温回火时基体组织主要以残余奥氏体为主.随着回火温度升高,残余奥氏体量减少,而其耐磨性随回火温度的升高逐渐升高,达到一定值后开始降低。以耐磨性为评价标准.最佳热处理工艺为:1050℃淬火,450℃或550℃回火;研究结果揭示了适量的残余奥氏体有利于提高滚动磨损性能。  相似文献   

9.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

10.
研究了等温淬火温度和保温时间对YP460钢的显微组织、物相组成、硬度和冲击性能的影响,优化了等温淬火工艺。结果表明:淬火态、250~300℃和325℃等温淬火态YP460钢的显微组织分别为马氏体+残余奥氏体、下贝氏体+残余奥氏体和上贝氏体+残余奥氏体;当等温温度为250、275和300℃时,随着等温保温时间的延长,洛氏硬度呈现逐渐增加的趋势而冲击韧性呈现逐渐降低的特征;而当等温温度为325℃时,洛氏硬度随着保温时间的延长逐渐降低而冲击韧性逐渐升高;相同等温保温时间下,325℃等温淬火态试样的洛氏硬度和冲击韧性都要低于250~300℃等温淬火态试样;YP460钢适宜的等温淬火工艺为300℃保温4~8 h。  相似文献   

11.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

12.
以冷轧Q&P钢的连续退火生产为工艺背景,采用两相区均热保温+缓冷+快冷至Ms与Mf点之间进行配分的热处理工艺,研究了两相区不同均热温度对低碳硅锰系Q&P980合金高强钢微观组织和力学性能的影响。结果表明,随着两相区均热温度的升高,铁素体含量降低,马氏体所占比例升高,且板条尺度有所增加;随着均热温度的升高,残留奥氏体含量先升高至最大值(7.2%)后降低;随着均热温度继续升高,基体内部马氏体的含量增加,导致材料抗拉强度增加,而伸长率的变化趋势则与残留奥氏体含量变化趋势相似;在配分温度为310 ℃时,最佳的均热温度区间为765.24~812.56 ℃,其中在790 ℃均热时,抗拉强度为1052 MPa,伸长率为22.9%,强塑积为24 090.8 MPa·%。  相似文献   

13.
采用SEM、TEM、XRD、室温拉伸等手段,研究了0.1C-7.2Mn钢两相区温轧淬火配分处理钢的组织形貌、碳化物析出、残留奥氏体体积分数及其中的C含量及力学性能。结果表明,随着温轧压下率的增大,两相区温轧淬火配分处理后试样的马氏体板条得到细化并逐渐平行于轧制方向;两相区温轧淬火配分处理后试样的显微组织由马氏体和残留奥氏体组成,并且有碳化物析出;随着温轧压下率的增大,碳化物的平均尺寸粗化,残留奥氏体的体积分数逐渐升高,并且残留奥氏体中的C含量先升高后降低,屈服强度和抗拉强度均先升高后降低,伸长率先降低后升高。当温轧压下率为80%时,强塑积达到最高31.50 GPa·%。  相似文献   

14.
针对含铌中锰钢进行了不同退火温度(700、750和800 ℃)和不同冷却方式(空冷、水冷)下的临界退火试验。结果表明,随着临界退火温度的升高,强塑积和残留奥氏体含量呈现先升高再降低的趋势。在750 ℃临界退火水冷后,试验钢的力学性能最佳,屈服强度达到750 MPa,抗拉强度为1820 MPa,断后伸长率为13.9%。随着临界退火温度升高,试验钢中渗碳体逐渐溶解,基体中C和Mn含量增多,在保温过程中配分进入奥氏体的C和Mn含量增多,导致奥氏体更稳定,残留奥氏体含量增多。当临界退火温度进一步升高,保温时奥氏体含量的增多导致配分进入奥氏体的C和Mn浓度降低,导致奥氏体稳定性降低,在冷却过程中形成大量马氏体。马氏体的增多和大尺寸团簇状(Nb,Mo)C的析出导致800 ℃临界退火后试验钢的高强度和低塑性。在相同临界退火温度下,水冷和空冷后试验钢的相组成相同。在800 ℃临界退火时,两种冷却方式对残留奥氏体含量和力学性能引起的差异最为明显,这与空冷过程中C和Mn向奥氏体配分更充分有关。  相似文献   

15.
采用部分奥氏体化-淬火-配分工艺对中锰钢进行热处理,研究不同淬火温度对微观组织和力学性能的影响。试验结果表明:随着淬火温度的升高,试验钢的伸长率先升高后降低,而抗拉强度却逐渐降低。淬火温度为140 ℃时,试验钢中一次马氏体和新生马氏体的体积分数之和最大,因此抗拉强度最高。淬火温度为180 ℃时,试验钢中残留奥氏体的体积分数最大,伸长率最高,综合力学性能最好,强塑积最高为30 328.2 MPa·%。而淬火温度升到200 ℃时,由于试验钢中残留奥氏体的含量减少以及新生马氏体的硬度降低,其伸长率和抗拉强度均降低。  相似文献   

16.
以20CrMnTi齿轮钢为模型,设计制备了不同碳含量及合金成分的试样,以10%NaCl水溶液与液氮作为淬火冷却介质。分析探讨了试样淬火后微观组织形貌与宏观硬度的对应关系,以及不同冷却速度对其组织转变的影响。结果表明:采用10%NaCl水溶液作为淬火介质时,低中碳试样的组织为典型板条马氏体,高碳试样微观组织中保留了大量残留奥氏体,硬度相对较低;液氮淬火过程中,高温区试样表面形成了氮气膜,传热缓慢,导致低碳试样淬火组织中出现少量铁素体组织,致使其硬度低于盐水淬火的全马氏体组织;然而,对于高碳及高Ni合金样品,高温区氮气膜的冷速已达到淬火临界冷速,且低温区的大过冷度进一步促进部分残留奥氏体向马氏体转变,宏观硬度表现为升高;低温区的液氮深冷作用导致细小残留奥氏体向马氏体转变,但粗大残留奥氏体转变较为困难。  相似文献   

17.
对自行设计的矿山球磨机衬板用中合金马氏体耐磨铸钢在900、950、1000、1050、1100 ℃淬火后回火,研究了淬火温度对试验钢组织和性能的影响。试验结果表明,经过淬火、回火处理后的试验钢显微组织由板条马氏体和残留奥氏体组成。当保持回火温度250 ℃不变,随着淬火温度的升高,马氏体组织先变细密后又变粗大,抗拉强度、冲击性能及残留奥氏体含量均呈现先增大后减小的趋势,在1050 ℃淬火取得最优综合力学性能:抗拉强度1623 MPa,冲击性能14.4 J,此时试验钢的强化机理为孪晶马氏体和高密度位错缠结。通过冲击磨损试验解释了试验钢在该工艺下的磨损行为与磨损机理。  相似文献   

18.
研究了锻造变形量与热处理工艺对一种新型耐磨钢显微组织、硬度和耐磨性的影响,并用彩色金相法定量分析了钢中马氏体+残留奥氏体含量。结果表明:不同变形量下耐磨钢组织均为贝马复合相,贝氏体板条厚度由30%变形量的524 nm降低到70%变形量的292 nm,马氏体+残留奥氏体体积分数由25.4%增加至41.1%;与直接进行260 ℃等温转变时相比,先在Ms点以上的330 ℃保温5 min,再进行260 ℃等温转变时的贝氏体板条厚度减少了357.2 nm,磨损量降低了0.02 g,且平均摩擦因数由0.311降至0.212。  相似文献   

19.
研究了淬火加热温度对超细晶Q&P钢微观组织、元素分布、残留奥氏体体积分数和力学性能的影响。结果表明,当淬火加热温度升高时,铁素体含量逐渐减少,马氏体含量升高,残留奥氏体含量呈现先增加后减少的趋势,高淬火加热温度下C元素的扩散速率加快,残留奥氏体的机械稳定性更好。软相铁素体的存在为试验钢提供了良好的韧性。当淬火加热温度为820 ℃时,Q&P钢的综合力学性能最好,抗拉强度为863 MPa,伸长率为26.1%,强塑积为22.5 GPa·%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号