首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential utilization of cyclic, orthorhombic α-sulfur (α-S) and chain-like polymeric μ-sulfur (μ-S) by Acidithiobacillus ferrooxidans was investigated. The growth and sulfur oxidation results indicated that utilization of μ-S by A. ferrooxidans was clearly different from α-S. Even if the planktonic cells were produced, the fall of pH and the rise of sulfate concentration were the same after 300 h on each substrate, the speeds of the planktonic cells increase, pH decrease and sulfate concentration increase in the earlier cultivation stage were faster on polymeric sulfur compared with the orthorhombic form. The adsorption capacity of the cells was higher on μ-S than on α-S. The results of SEM, DRIFTS and XRD analyses indicated that the surfaces of α-S and μ-S were modified differently by cells. Differential expression of 11 selected sulfur adsorption-activation and metabolism relevant genes was detected by RT-qPCR. The results showed that the expression of the hydrophobic substrate transport proteins and the sulfur metabolism related proteins was up-regulated, and the adsorption and activation related proteins were down-regulated when the cells were grown on μ-S, suggesting that μ-S could be more easily bio-adapted and activated than α-S.  相似文献   

2.
The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates, elemental sulfur and ferrous sulfate, were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis. Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOE Based on peptide mass fingerprints and bioinformatical analysis, the extracellular proteins were classified according to their functions as conjugal transfer protein, pilin, vacJ lipoprotein, polysaccharide deacetylase family protein, Ser/Thr protein phosphatase family protein and hypothetical proteins. Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif, these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.  相似文献   

3.
1 Introduction One of the main applications of biotechnology to hydrometallurgy is based on the ability of bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans to oxidize sulfide minerals to soluble compone…  相似文献   

4.
This study investigated the promotion effect of A. ferrooxidans on complex heavy metals coprecipitation process. A. ferrooxidans significantly enhanced the ferrous oxidation, which also promoted the formation of iron-oxyhydroxysulphate. Cu(II) concentration reduced to 0.058 mmol/L in A. ferrooxidans inoculated system, and Cd also reduced to the lowest concentration (0.085 mmol/L). Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution. The precipitates are characterized by XRD, SEM, and FTIR analysis. The main component of the iron-oxyhydroxysulphate was well crystallized jarosite. A. ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage. Higher ferrous iron oxidation rate and Fe(III) supply rate in A. ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter. Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal, and efficiently removed from acidic wastewater through A. ferrooxidans mediated coprecipitation.  相似文献   

5.
In order to characterize the efficiency of copper bioleaching from anilite using pure cultures of Acidithiobacillus ferrooxidans in the absence and presence of ferrous sulphate, the experiments were carried out in shake flasks with or without 4 g/L ferrous sulphate (FeSO4·7H2O) at pH 2.0, 150 r/min and 35°C. The tests show that Acidithiobacillus ferrooxidans is unable to attack anilite in iron-free 9K medium. Anilite is rapidly oxidized by bacterial leaching when ferrous sulphate is added. Chemical oxidation of anilite is slow compared with Acidithiobacillus ferrooxidans initiated solubilization in the presence of iron. The EDAX analysis of the surfaces of anilite confirms that sulfur coating layer is present as a reaction product on the surface of the bacterially leached mineral.  相似文献   

6.
对一种用于嗜酸性氧化亚铁硫杆菌液氮冷藏新型保护剂GP的保藏效果进行研究。依据最大细胞复苏率及最高亚铁氧化活性确定该新型保护剂的最佳使用浓度。结果表明,保护剂的最佳浓度为30%,在此浓度下细胞复苏率达到84.4%,且能在120h内完全氧化培养基中的亚铁,培养6d后菌体浓度达到5.8×107cell/mL。此外,解冻细胞在9K培养基中培养6d后,对活细胞复苏的最佳GP残留浓度为0.6%(体积分数)。在此浓度下,菌株DC完全氧化亚铁需要108h,并且最终菌体浓度为6.8×107cell/mL.因此,GP是一种简单、有效的嗜酸性氧化亚铁硫杆菌液氮保藏的冷冻保护剂。  相似文献   

7.
The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates, elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOE Based on peptide mass fingerprints and bioinformatical analysis,the extracellular ...  相似文献   

8.
1 Introduction The bioleaching research has a great progress in metallurgy industry. A significant number of commercial applications have emerged and are able to compete with conventional processing, especially the application for the copper recovery. Fur…  相似文献   

9.
10.
The original strains Acidithiobacillus ferrooxidans GF and Acidiphilium cryptum DX1-1 were isolated from the drainage of some caves riched in chalcopyrite in Dexing Mine in Jiangxi Province of China.The optimum temperature and pH for growth were 30℃and 3.5 for Ac.cryptum DX1-1,and 30℃and 2.0 for At.ferrooxidans GF,respectively.For Ac.cryptum DX1-1,the optimum UV radiating time was 60 s and the positive mutation rate was 22.5%.The growth curves show that Ac.cryptum after mutagenesis reached stationary phase ...  相似文献   

11.
12.
Zeta potentials of pyrite and Acidithiobacillusferrooxidans cultured by sulfur in different levels of ionic strength and pH values were measured by Coulter Delsa 440SX zeta potential determinator. Meanwhile, the effects of bacterial adhesion and bacterial concentration on zeta potential of pyrite after adsorption were investigated. The results show that with the increase of ionic strength, zeta potentials of pyrite decrease in the range ofpH 2.5-10.5 and the isoelectric point(IEP) of mineral shifts to the left. It is also found that the specific adsorption on pyrite of chloride ion can affect zeta potentials of pyrite sharply. As bacterial adsorption occurs, IEP of pyrite shifts towards that of Acidithiobacillus ferrooxidans; as bacterial concentration is inerescent, this tendency is even larger and more obvious. Finally, a reasonable explanation for above-mentioned experimental phenomena was given by electrical double layer model and surface ionization model.  相似文献   

13.
In this study, corrosion behaviors of carbon steel C1010 in the presence of an acidophilic, iron-oxidizing bacterial species Acidithiobacillus ferrooxidans were examined. Results showed that A. ferrooxidans cells, with or without attaching to C1010 steel, accelerated its corrosion at a rate of 3–6× those of acidic water, at a pH of 2, without cells. A. ferrooxidans oxidized Fe2+ to Fe3+ as an energy source and the produced Fe3+ rapidly oxidized Fe0 to Fe2+ was proposed and verified as the reason. In addition, severe pitting corrosion was found on the C1010 steel surface in solutions containing A. ferrooxidans cells.  相似文献   

14.
研究了一株源自江西德兴铜矿矿区的中温嗜酸兼性异养菌Acidiphilium sp.DX1-1的分离、鉴定、特征及其浸矿行为。菌株Acidiphilium sp.DX1-1为短杆状革兰氏阴性菌,最适合的生长温度为30℃,最适合的生长pH约为3.5。该菌株具有广泛的底物利用特性,可以利用有机物进行异养生长并在细胞内积累聚羟基丁酸酯,也可以利用单质硫、三价铁等无机物进行自养生长。系统发育分析表明DX1-1属于Acidiphilium属,与Acidiphilium cryptum and Acidiphilium multivorum的同源性大于99%。在铁闪锌矿生物浸出过程中,Acidiphilium sp.DX1-1表现出极强的浸矿能力,其作用不仅仅是之前报道的作为其他自养嗜酸浸矿细菌的辅助者。在初始pH3.5时,DX1-1能够在一个月内单独地浸出铁闪锌矿中40%的锌。该浸出率高于它与A.ferrooxidans混合以及A.ferrooxidans单独浸出铁闪锌矿(初始pH均为2.0)的浸出率。  相似文献   

15.
研究转鼓和搅拌槽反应器中氧化亚铁硫杆菌在不同Al2O3粉末含量下对Fe2+的氧化。结果表明:未添加Al2O3粉末时,氧化亚铁硫杆菌在搅拌槽中的生物活性比在转鼓中的生物活性高。当Al2O3粉末含量从0增加到50%(质量分数)时,Fe2+的生物氧化速率从0.23g/(L·h)显著降低到0.025g/(L·h),可能是搅拌槽中的固体颗粒碰撞和研磨作用导致氧化亚铁硫杆菌失活。转鼓中Al2O3的含量增加对氧化亚铁硫杆菌的生物活性仅有较小的负面影响,这是由于两个反应器不同的混合机制所致。在相同的Al2O3含量下,Fe2+在转鼓反应器中的生物氧化速率比在搅拌槽中的生物氧化速率更高,尤其在较高的固体含量下,表明转鼓反应器能允许较高的固体含量和维持较高的生物活性。由于Al2O3粉末与真实硫化矿具有不同的物理化学性质,因此转鼓反应器用于硫化矿生物浸出的可行性还需进一步验证。  相似文献   

16.
The adhesion of ferrous ions grown Leptospirillumferrooxidans cells on pyrite and chalcopyrite minerals was investigated through adsorption, Zeta-potential and diffuse reflectance FT-IR measurements. The influence of bacterial species on minerals floatability was determined by Hallimond flotation tests while the flocculation behaviour was examined by Turbiscan measurements. The minerals iso-electric point (pH 6.5-7.5) after interaction with bacterial cells shifted towards cells iso-electric point (pH 3.3), indicating the chemical nature of cells adsorption on mineral surfaces. The FT-IR spectra of minerals treated with bacterial cells showed the presence of all the cell functional groups signifying cells adsorption. The bacterial cells adsorption on chalcopyrite was higher compared with pyrite, which agreed with cells greater depression effect on chalcopyrite flotation and pronounced flocculation behaviour in comparison with pyrite.  相似文献   

17.
The bioleaching of pyrite and biosolubilization of rock phosphate (RP) in 9K basal salts medium were compared by the following strains of an autotrophic acidophilic bacterium, Acidithiobacillus ferrooxidans, a heterotrophic acidophilic bacterium, Acidiphilium cryptum, and mixed culture of At. ferrooxidans and A. cryptum. The results show that A. cryptum is effective in enhancing the bioleaching of pyrite and biosolubilization of RP in the presence of At. ferrooxidans, although it could not oxidize pyrite and solubilize RP by itself. This effect is demonstrated experimentally that A. cryptum enhances a decrease in pH and an increase in redox potential, concentration of total soluble iron and planktonic part bacterial number in the broth during pyrite bioleaching processes by At. ferrooxidans. The mixed culture of At. ferrooxidans and A. cryptum leads to the most extensive soluble phosphate released at 30 °C. Pulp density exceeding 3% is shown to adversely influence the release of soluble phosphate by the consortium of At. ferrooxidans and A. cryptum. It is essential to add pyrite to the 9K basal salts medium for the biosolubilization of RP by the mixed culture of At. ferrooxidans and A. cryptum, and the percentage of soluble phosphate released is the greatest when the mass ratio of RP to pyrite is 1:2 or 1:3.  相似文献   

18.
The effects of visible light and Cd2+ ion on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied by scanning electron microscopy (SEM), synchrotron radiation X-ray diffraction (SR-XRD), and X-ray photoelectron spectroscopy (XPS). The results of bioleaching after 28 days showed that the copper dissolution increased by 4.96% with only visible light, the presence of Cd2+ alone exerted slight inhibition effect on chalcopyrite dissolution and the concentration of dissolved copper increased by 14.70% with visible light and 50 mg/L Cd2+. The results of chemical leaching showed that visible light can promote the circulation of iron. SEM results showed that Cd2+ promoted the attachment of A. ferrooxidans on chalcopyrite surface under visible light. SR-XRD and XPS results indicated that visible light and Cd2+ promoted chalcopyrite dissolution, but did not inhibit the formation of passivation. Finally, a model of synergistic catalysis mechanism of visible light and Cd2+ on chalcopyrite bioleaching was proposed.  相似文献   

19.
20.
为了确定浸矿菌耐氟的机制,在氟化物存在的条件下,驯化铀矿浸出菌嗜酸氧化亚铁硫杆菌ATCC23270,研究溶液中含不同氟浓度、不同pH值时铀矿浸出菌的活性变化,以及有无蛋白酶K处理时铀矿浸出菌细胞内氟浓度的变化情况。采用铂电极和Ag/AgCl参比电极测量氧化还原电位,以作为细菌不同活性的参照指标,采用氟离子选择性电极测定细胞内的氟浓度。结果表明,真正影响铀矿浸出菌活性的是HF,溶液pH值增加以及溶液中与氟有较强络合能力的离子浓度的变化,也会引起耐氟菌假象的出现。浸矿菌的耐氟能力可能与细胞壁和细胞膜上的一些蛋白密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号