首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
以模板法合成介孔碳并作为载硫基底制备硫/介孔碳复合材料。采用电化学方法对硅碳负极预锂化,并与硫/介孔碳正极匹配构建高性能预锂化硅-硫全电池。结果表明:当全电池的负极锂容量过量正极约20%时,预锂化硅-硫全电池初始容量为1069 mA·h/g,能量密度为590 Wh/kg。循环100圈后,电池容量为603 mA·h/g,对应容量保持率为56.4%。同时,硅碳极片的引入对电池阻抗影响较小,正负极极片结构在循环后依然保持稳定。通过改变硅碳负极锂容量研究其对全电池性能的影响,全电池循环性能在负极容量过量系数约为50%时最佳,循环100圈后放电比容量达到650 mA·h/g。  相似文献   

2.
电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能的比较   总被引:1,自引:0,他引:1  
用电沉积方法在Cu集流体上分别制备出用于锂离子电池负极材料的密集细粒状(<0.5 μm)和分散粗粒状(≈3 μm)两种Sn薄膜电极.用X射线衍射、扫描电镜、循环伏安及充、放电实验研究比较了两电极的组织与性能.结果表明,在氟硼酸盐溶液中使用以醛类为主的复合添加剂,在静止条件下可制得细粒Sn薄膜电极,在搅拌条件下可制得粗粒Sn薄膜电极;细粒Sn薄膜电极比粗粒Sn薄膜电极具有较优的初始嵌锂容量和循环稳定性:细粒Sn薄膜电极首次放电比容量达到787 mA·h/g,40次循环时放电比容量仍保持在630 mA·h/g;而粗粒Sn薄膜电极首次放电比容量只有576 mA·h/g,至20次循环放电比容量降至150 mA·h/g.  相似文献   

3.
通过密封加热熔融的方式制备了添加CNT的活性炭/硫锂离子电池正极活性材料,并对其进行PEG包覆复合改性,制备了C-CNT/S(PEG)正极复合材料。X射线衍射(XRD)图谱显示复合材料具有较强的非晶结构,且单质硫分散在碳材料的微孔之中。扫描电镜(SEM)显示CNT均匀分散在复合材料之中,并形成了三维导电结构。放电比容量测试显示CNT的加入提高了复合材料的放电比容量;PEG包覆的复合改性材料首次放电比容量高达1371.1 m Ah/g,循环50次后放电比容量为662.8 m Ah/g。说明添加CNT及PEG包覆复合改性,使活性炭/硫正极材料的电化学性能显著提高。  相似文献   

4.
利用导电炭黑和导电石墨两款碳材料制作涂碳铝箔,将其作为锂硫电池正极的集流体,考察箔材种类对电极性质和电池性能的影响规律。结果表明:所制作的涂碳铝箔具有"点-面"结合的导电架构,其不仅可以改善硫电极的导电性,而且有利于增强活性物质与集流体的粘结性、抑制电解液对铝箔的腐蚀。涂碳铝箔可以显著降低电池的极化阻抗,维持稳定的充放电平台。相比使用传统铝箔,使用涂碳铝箔的电池的活性物质利用率更高,循环性能更为优异,经0.2C充放电循环40次后,其放电容量达到602 F/g,容量保持率为77.7%。  相似文献   

5.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

6.
采用固相反应法制备Mg2+掺杂的锂离子电池正极材料LiNil/3Col/3Mnl/3O2,并将Mg2+最佳掺杂量为0.03(摩尔分数)的样品进行CuO复合。通过X射线衍射(XRD)、扫描电镜(SEM)和电池测试系统等手段对制备的LiNil/3Col/3Mnl/3O2样品的结构、形貌及电化学性能进行表征。结果表明:Mg2+掺杂没有改变LiNil/3Col/3Mnl/3O2的层状结构,Mg2+掺杂量为0.03的LiNil/3Col/3Mnl/3-0.03Mg0.03O2材料具有最好的电化学性能和循环性能,在0.2C倍率下,首次放电比容量达158.5 mA·h/g,10次循环后容量保持率为91.2%。添加CuO的LiNil/3Col/3Mnl/3-0.03Mg0.03O2的首次放电容量为167.4 mA·h/g,高电压下达到181.0 mA·h/g;循环10次后,放电比容量为159.4 mA·h/g,容量保持率为95.3%,改性后的放电比容量、循环性能及在高倍率和高电压下的性能均得到改善。  相似文献   

7.
用化学聚合法合成聚苯胺(PAn),并考察其在LiCoO2和LiMn2O<,4>正极中的双重功能.结果表明:在优化条件下PAn的产率y=94.06%、导电率σ=18.39 S/cm,大于乙炔黑(AB)的导电率σ=7.77 S/cm;以制备的PAn为锂离子电池正极活性材料,在不添加其他导电剂对其进行恒电流充、放电试验(电流密度J=15 mA/g)时,第三循环的比放电容量D3=60.8mA·h/g、充、放电效率n3=94.56%;PAn在正极中兼有活性材料的功能;以LiCoO2和尖晶石LiMn2O<,4>为正极活性材料,以PAn替代AB作为导电剂进行恒电流充、放电试验,在电流密度分别为15、30、45和60 mA/g时,比充、放电容量都增大,表明正极的极化程度减小;正极在经过较大电流密度(60 mA/g)充、放电后,再以小电流密度(15 ma/g)进行充、放电时,比充、放电容量几乎没有变化,表明经较大电流密度(60 mA/g)充、放电后,LiCoO2和尖晶石LiMn2O<,4>的贮锂结构没有改变.  相似文献   

8.
在一定条件下通过加热聚丙烯腈和单质硫制备了二次锂电池用导电含硫聚合物正极材料(CSM).分别采用固体13C-NMR、FTIR、Raman、XPS和XRD对CSM进行了结构表征.结果表明:CSM分子结构中包含有类并吡啶高分子主链,在主链分子间或分子内连接有S-S键.CSM在锂电池中具有优异的电化学循环性能和倍率循环特性,在0.2 mA/cm2充放电电流密度下,第2次循环容量约520 mA·h/g,380次循环后稳定容量约470 mA·h/g,容量保持率90%以上;在4.0 mA/cm2电流密度下放电,循环性能仍然良好,80次循环容量约450 mA·h/g.  相似文献   

9.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

10.
以升华硫粉为原料,采用液相沉积法在水溶液体系下制备纳米硫材料。采用激光粒度分析仪和扫描电镜,对纳米硫的合成条件进行分析与优化;通过恒流充放电测试、电化学阻抗分析等方法对所制备纳米硫的电化学性能进行表征。结果表明:在以甲酸为沉淀剂、PEG-400为分散剂、多硫化钠溶液浓度为0.2 mol/L的合成条件下,可制备出粒径范围为50~80 nm、平均粒径约65 nm且分散性较好的类球形纳米硫材料。基于该纳米硫组装的锂/硫电池在0.054 mA/cm2电流密度下,首次放电比容量达1050 mA?h/g,经10次循环后,放电容量仍可保持初始容量的70%左右(700 mA?h/g)。本方法工艺简单、操作方便、成本低廉,适合锂/硫电池用纳米硫材料的工业化制备。  相似文献   

11.
Carbon nanotubes (CNTs) and acetylene black (AB) were dispersed synchronously or separately between LiFePO4 (LFP) particles as conducting agents during the course of manufacture of LiFePO4 cathodes. The morphology and electrochemical performances of as-prepared LiFePO4 were evaluated by means of transmission electron microscopy (TEM), charge-discharge test, electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV). CNTs contribute to the interconnection of the isolated LiFePO4 or carbon particles. For the CNTs-modified LiFePO4, it exhibits excellent performance in terms of both specific capacity and cycle life. The initial discharge capacity is 147.9 mA·h/g at 0.2C rate and 134.2 mA·h/g at 1C rate, keeping a capacity retention ratio of 97% after 50 cycles. The results from EIS indicate that the impedance value of the solid electrolyte interface decreases. The cyclic voltammetric peak profiles is more symmetric and spiculate and there are fewer peaks. CNTs are promising conductive additives candidate for high-power Li-ion batteries.  相似文献   

12.
采用溶胶-凝胶法,合成纳米复合材料硅酸亚铁锂(Li2FeSiO4/C)。用XRD、TEM和电化学方法,研究了Co2+掺杂对Li2FeSiO4/C的影响。结果表明,掺杂适量的Co2+不会改变Li2FeSiO4的正交晶系结构,可稳定材料结构,改善高倍率充放电性能。室温下,Li2Fe0.97Co0.03SiO4/C以0.1C放电的首次放电比容量为151.8(mA.h)/g,20次充放电循环后放电比容量为131.2(mA.h)/g;Li2FeSiO4/C的首次放电比容量为122.0(mA.h)/g,20次循环后,比容量衰减率为20.3%。交流阻抗测试表明:Li2Fe0.97Co0.03SiO4/C在1.5~4.5V下充放电的可逆性优于Li2FeSiO4/C。  相似文献   

13.
以钛酸四丁酯和乙酸锂为原料,水热法制备前驱体,再经过短时间的高温煅烧制备Li4Ti5O12负极材料。利用XRD、SEM和恒电流充放电方法分别测定材料的结构、形貌以及材料的电化学性能。结果表明:制备出的产物Li4Ti5O12颗粒具有尖晶石型结构,其中800°C、6h烧结出的样品具有约800nm的粒径,并表现出优良的电化学性能,0.1C和5C首次放电容量分别达到158.7(mA.h)/g和109.3(mA.h)/g,不同倍率下循环20次容量保持率较好。  相似文献   

14.
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.  相似文献   

15.
在不同表面活性剂浓度下通过溶胶-凝胶自组装方法制备了具有介孔结构的层次多孔碳材料(HPCs)。用场发射扫描电镜(FE-SEM)、透射电镜(TEM)、氮气吸脱附测试和恒流充放电测试对样品进行物理和电化学性能研究。结果表明:所有的HPCs主要为介孔结构并且具有相似的孔径分布。以HPCs为空气电极载体碳材料的锂空气电池具有较高的放电容量。且相似孔径大小的碳材料为载体的锂空气电池放电容量随着碳材料的比表面积增加而增加。在c(CTAB)=0.27 mol/L时制备的HPCs-3样品具有最佳的电化学性能。通过控制放电深度至800 mA·h/g,电池表现出良好的容量保持率,在0.1 mA/cm2电流密度下,首次放电容量为2050 mA·h/g。  相似文献   

16.
利用NaBH4溶液还原PdCl2的方法在具有纳米刺状表面的α-MnO2中空微球上沉积Pd,制备一种α-MnO2/Pd核壳型复合催化剂作为新一代可充锂-空气电池的催化剂。TEM、XRD和EDS等方法的分析结果表明,在催化剂中纳米Pd颗粒均匀地分布在刺状α-MnO2中空微球表面,Pd在催化剂中的质量分数约为8.88%。充放电测试结果表明,与纳米刺状的α-MnO2中空微球催化剂相比,α-MnO2/Pd复合催化剂提高了空气电极的能量转化效率和充放电循环性能。由Super P碳材料和所制备的α-MnO2/Pd复合催化剂所构成的空气电极在0.1mA/cm2电流密度下的首次放电比容量可以达1220 mA·h/g,经13次充放电循环后的容量保持率为47.3%。该纳米刺状α-MnO2/Pd核壳型复合催化剂是一种有前途的空气电池催化剂。  相似文献   

17.
锂离子电池用氧化亚铜/石墨烯负极材料的制备   总被引:1,自引:0,他引:1  
在不添加表面活性剂的水溶液体系中,采用水合肼作为还原剂制备得到具有八面体形貌的氧化亚铜/石墨烯复合材料。透射电镜分析表明:氧化亚铜颗粒与石墨烯在复合物中呈多层次分布,而且氧化亚铜一次颗粒很好地嵌入在石墨烯层间。相比于纯氧化亚铜,氧化亚铜/石墨烯复合材料作为锂离子电池负极材料的电化学性能得到了显著的改善。在100 mA/g的电流密度下循环50次后,氧化亚铜/石墨烯复合物的可逆比容量高达348.4 mA?h/g,同时,在不同倍率下(50,100,200,400,800 mA/g)循环60次后,其可恢复容量仍达305.8 mA?h/g。  相似文献   

18.
In order to optimize and select the appropriate binder to improve the electrochemical performance of aqueous zinc?manganese batteries, the influences of water-soluble binders and oil-based binders on the zinc storage performance of manganese-based cathode materials were systematically investigated. The results show that the water-soluble binders with large numbers of hydroxyl and carboxyl groups are easily soluble in aqueous electrolytes, leading to poor electrochemical performance. Fortunately, the cathodes with polyvinylidene fluoride? hexafluoropropylene (PVDF?HFP) binder display high specific capacity of 264.9 mA·h/g and good capacity retention of 92% after 90 cycles at 100 mA/g. Meanwhile, PVDF?HFP binder with plenty of hydrophobic groups presents excellent ability in inhibiting cracks on the surface of electrode, reducing voltage polarization and charge transfer resistance, as well as maintaining electrode integrity.  相似文献   

19.
LiMnPO4/C composites were synthesized via solid-state reaction with different carbon sources:sucrose,citric acid and oxalic acid.The samples were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and electrochemical performance test.The results of XRD reveal that carbon coating has no effect on the phase of LiMnPO4.The LiMnPO4/C synthesized at 600 ℃ with citric acid as carbon source shows an initial discharge capacity of 117.8 mAh·g-1 at 0.05 C rate.After 30 cycles,the capacity remains 98.2 mAh.g 1.The improved electrochemical properties of LiMnPO4/C is attributed to the decomposition of organic acid during the sintering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号