首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.  相似文献   

2.
《Acta Materialia》2003,51(3):805-817
A fully pearlitic steel (specimen P1) was subjected to cold-drawing (P2) followed by aging at 423 K (P3) or 673 K (P4). Some drawn samples were annealed to make cementite particles spherical (P5). By using neutron diffraction, high compressive residual stress component parallel to the drawing direction was detected in the ferrite matrix of specimen P2, whereas this stress level was partly relaxed in P3 and mostly in P4. In situ neutron diffraction experiments performed during tensile tests have revealed different work hardening behaviors in these specimens. Based on the data provided by a profile analysis of diffraction spectra, i.e. microstrain related to dislocation density and block size, strength and work-hardening of these specimens are discussed. In particular, it is documented that the treatment of the specimen P4 which is equivalent to commercially Zn-plated steel wires produces the largest internal stress by tensile deformation leading to a good balance of strength and uniform elongation.  相似文献   

3.
采用透射电镜(TEM)、扫描电镜(SEM)、室温拉伸等手段,研究了650~730 ℃温轧温度对0.46%C中碳钢的组织演变及力学性能的影响。结果表明,经90%的轧制变形,试验钢铁素体晶内引入大量位错,渗碳体片层产生应力集中导致层片状渗碳体弯曲、扭折、碎化为颗粒状。随着温轧温度的降低,位错增殖明显,渗碳体球化率增加,分布越来越均匀,抗拉强度和伸长率整体上升。当温轧温度为650 ℃时,渗碳体球化最好,抗拉强度877 MPa,断后伸长率16.0%,综合力学性能最好。拉伸断口结果表明,随着温轧温度的降低,试验钢的断裂机制由韧-脆混合断裂转变为韧性断裂,塑性提高。  相似文献   

4.
Neutron diffraction measurements have revealed that cementite peaks disappear in a pearlite steel with drawing and that the residual intergranular stresses are generated. The diffraction profiles in a heavily drawn specimen suggest the tetoragonality with a small c/a in the ferrite matrix. Although cementite was hardly observed in the heavily drawn specimen, its c/a value determined by neutron diffraction and mechanical behavior are quite different from those of as-quenched martensite. The changes in hardness and c/a with annealing or tempering were also different between heavily drawn pearlite and marteniste. Hence, most of carbon atoms do not exist inside the ferrite lattice in the drawn pearlite and multi-scaled heterogeneous plastic deformation in pearlite seems to affect the asymmetry in the diffraction profile. Fracture behavior and hardness change with tempering is different in the two microstructures.  相似文献   

5.
Metallographic structures of carbide-free bainite steel wheel rim are mainly composed of supersaturated lath ferrite and retained austenite film among bainitic ferrite laths. It is suspected that supersaturated ferrite and retained austenite are likely to decompose under the influence of temperature change and mechanical stress. Stability of wheel rim structure is studied by means of x-ray diffraction, dye microscopy, and micro-hardness test. When the samples are tempered in the range of 150-350 °C, the retained austenite films are at the state of relative stability. Fifty percent of retained austenite is decomposed when the sample is tempered at 400 °C. Microhardness increases when the sample is tempered at 150 °C. The decrease in hardness is mild when the samples are tempered from 200 to 500 °C. The mechanical stability of retained austenite film is studied with tensile sample under the effect of tensile stress. The retained austenite appears to be stable in low and middle degree of deformation, and decomposition occurs at great amount of deformation. Diffraction peak of carbide is not found in all above experiments. The steel enriched silicon prevents the carbide precipitation during the transformation. It indicates the carbide-free bainite wheel steels have an excellent thermal and mechanical stability.  相似文献   

6.
双相钢空蚀破坏的力学机制   总被引:3,自引:0,他引:3  
刘诗汉  陈大融 《金属学报》2009,45(5):519-526
对由铁素体和渗碳体组成的低、中、高碳钢进行振动空蚀实验,发现它们空蚀破坏的共同特点是铁素体的严重变形和破损.但由于铁素体的含量及分布形态不同,材料空蚀破坏的表现形式大不相同:铁素体含量高的低碳钢以大面积均匀塑性变形为主;铁素体含量与珠光体含量大致相等并呈网状分布的中碳(亚共析)钢是由于铁素体隆起脱落而破坏;以珠光体为主的高碳钢是由于铁素体从渗碳体的夹缝中向外挤出、两相分离而破坏.微射流冲击形成的应力波使低强度相屈服是造成上述破坏的原因.  相似文献   

7.
The effects of the annealing temperature and annealing time on the microstructural evolution and corresponding mechanical properties of cold-drawn high carbon steel wires were investigated. During the annealing of cold-drawn steel wires, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. To investigate the mechanisms of strain ageing, a thermal analysis using DSC was performed. The mechanisms for the first and second stages were found to be the diffusion of carbon atoms to dislocations in the lamellar ferrite and the decomposition of lamellar cementite. The third peak of the DSC curves was controlled by the re-precipitation of cementite or by the spheroidization of lamellar cementite.  相似文献   

8.
The tensile and reverse-bending fatigue behaviors of the SAE 6150 steel in the dual-phase (DP), fully martensitic, and tempered states, respectively, have been investigated using mechanical tests, scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) microscopy, and optical microscopy. Residual stresses, inherent microcracks, and retained austenite films in the martensitic steel, quenched from 900 °C, lead to the development of inferior tensile and fatigue strength. Tempering at 700°C relieves the residual stresses associated with martensite, causes the precipitation of microalloy carbides (MACs), and thus results in superior strength, increased fatigue resistance, and moderate ductility. The DP microstructure, consisting of martensite islets in a ferrite matrix, gives rise to a combination of good strength, excellent ductility, and commendable fatigue characteristics. MAC in the tempered steel and martensite islands in the DP variant enhance fatigue performance by causing crack tip deflection and concomitant crack path tortuosity. Strain incompatibility between martensite and ferrite in the DP steel, and cementite films and ferrite in the tempered variant are identified as fatigue crack initiation sites.  相似文献   

9.
In situ synchrotron microbeam x-ray diffraction experiments were carried out to study the microscopic deformation within individual ferrite grains in a martensite/ferrite dual-phase steel (DP980) under incremental tensile loading. The differential aperture x-ray microscopy technique was used to resolve the strain variations as a function of depth up to 100 μm deep from the sample surface. The highly inhomogeneous distributions of the lattice strain, which is associated with the elastic deformation and stresses inside the grains, were determined by means of monochromatic energy diffraction, whereas insights to the plastic deformation were revealed by polychromatic energy diffraction.  相似文献   

10.
利用Gleeble 1500热模拟试验机进行单轴热压缩实验, 结合SEM, TEM和EBSD等方法研究了过共析钢温变形过程中的组织演变规律, 重点讨论了铁素体的等轴化演变过程, 同时考察了合金元素Al的影响. 结果表明: 过共析钢温变形经历片层渗碳体的熔断球化、铁素体的等轴化以及渗碳体的溶解再析出等过程. 温变形初期, 片层状渗碳体缺陷处局部熔断的同时其近邻铁素体内产生大量位错, 并通过动态回复过程形成亚晶; 继续变形过程中, 由于渗碳体粒子钉扎, 亚晶发生转动, 导致大角度晶界的形成, 即铁素体通过连续动态再结晶过程实现等轴化.Al的加入细化了铁素体晶粒尺寸, 提高了等轴状铁素体晶粒大角度晶界的比例.  相似文献   

11.
An investigation on subcritical spheroidization anneal of the cold-rolled 50CrV4 steel at 720?°C has been carried out. During spheroidization anneal, the lamellar cementite was gradually broken down and changed to spherical shape. With prolonging of soaking time, the amount of lamellar cementite decreases gradually, and that of the spheroidized cementite particle increases gradually. The relationship of the spheroidization ratio versus soaking time for the steel can be described by a typically sigmoid curve. Additionally, the cold rolling deformation accelerates the breakup of lamellar cementite and the formation of spheroidal cementite particles during spheroidization anneal of the steel. The more severe the deformation is, the more rapidly the spheroidization occurs. From the results of tensile and hardness test, the yield strength, ultimate tensile strength, and hardness decrease and the percentage elongation to failure increases rapidly during the first 2?h of spheroidization. Between 2 and 8 h, the yield strength, ultimate tensile strength, hardness nearly keep a constant, which are independent of the soaking time, whereas the percentage elongation to failure firstly increases and then decreases with prolonging of soaking time.  相似文献   

12.
We have studied the decomposition kinetics of the metastable austenite phase present in quenched-and-tempered SAE 52100 steel by in situ high-energy synchrotron X-ray diffraction experiments at elevated temperatures of 200–235 °C under a constant tensile stress. We have observed a continuous decomposition of austenite into ferrite and cementite. The decomposition kinetics is controlled by the long-range diffusion of carbon atoms into the austenite ahead of the moving austenite/ferrite interface. The presence of a tensile stress of 295 MPa favours the carbon diffusion in the remaining austenite, so that the activation energy for the overall process decreases from 138–148 to 82–104 kJ mol?1. Before the austenite starts to decompose, a significant amount of carbon atoms partition from the surrounding martensite phase into the metastable austenite grains. This carbon partitioning takes place simultaneously with the carbide precipitation due to the over-tempering of the martensite phase. As the austenite decomposition proceeds gradually at a constant temperature and stress, the elastic strain in the remaining austenite grains continuously decreases. Consequently, the remaining austenite grains act as a reinforcement of the ferritic matrix at longer isothermal holding times. The texture evolution in the constituent phases reflects both significant grain rotations and crystal orientation relationships between the parent austenite phase and the newly formed ferritic grains.  相似文献   

13.
采用彩色金相、SEM、TEM和X射线衍射技术研究了低碳-硅-锰TRJP钢在单向拉伸状态下的组织演变规律.结果表明,TRIP钢变形前的组织为F、B和残余奥氏体,经拉伸变形后部分残余奥氏体在应变作用下转变为孪晶结构的马氏体,提高了钢的强度;TRIP钢的断裂为韧性断裂,位于F晶界处的残余奥氏体发生相变从而松弛了应力,延缓了断裂的产生,使TRIP钢板获得高塑性.  相似文献   

14.
The optical microscope (OM), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), x-ray diffractometer (XRD), x-ray energy spectrometer, Vickers hardness tester, and universal tensile test machine were employed to investigate the effects of Zn additions and hot-rolling on microstructures, aging behaviors, and mechanical properties of Mg-6Gd-3.2Y-0.5Zr extruded sheet. Block-shaped and acicular LPSO structures are found in the alloy containing Zn. The block-shaped LPSO structures can refine the microstructure and improve the secondary deforming ability. The size of β′ phases between the acicular LPSO structures decreases greatly. Both the block-shaped and acicular LPSO structures can improve the tensile mechanical properties of the Mg-Gd-Y-Zn-Zr alloys. Secondary deformation which gives rise to residual stress can promote age-hardening behavior and shrinks the peak-aging time. Owing to LPSO structures and the secondary deformation, T10 sample of alloy C obtains the highest proof strength of 375 MPa and tensile strength of 420 MPa.  相似文献   

15.
对热轧中碳钢板进行亚温淬火,随后冷轧(变形量50%)并进行不同时间退火,退火温度为550℃。通过扫描电镜(SEM)、X射线衍射(XRD)、背散射电子衍射(EBSD)对退火试样进行显微组织表征,并通过室温拉伸试验分析了双峰结构对力学性能的影响。结果表明,退火处理后的组织由铁素体和渗碳体两相构成,铁素体由细晶区/粗晶区共同组成。随着退火时间的延长,细晶峰值略有增大,但是增长并不明显,粗晶峰值晶粒呈减小趋势。随着退火时间的延长,试样的抗拉强度和屈服强度呈下降趋势,伸长率呈上升趋势,韧窝尺寸增大,深度增加,并且在大尺寸韧窝附近富集小尺寸韧窝。当退火时间为30 min时,力学性能最优。  相似文献   

16.
《Acta Materialia》2004,52(8):2209-2220
The microstructure and texture development of a medium-carbon steel (0.36% C) during heavy warm deformation (HWD) was studied using scanning electron microscopy and electron back scattering diffraction. The spheroidization of pearlite is accelerated due to the HWD, which leads to the formation of completely spheroidized cementite already after the deformation and coiling at 873 K (600 °C). The homogeneity of the cementite distribution depends on the cooling rate and the coiling temperature. The cooling rate of about 10 K/s (ferrite–pearlite prior to HWD) and deformation/coiling at 943–973 K (670–700 °C) lead to a homogeneous cementite distribution with a cementite particle size of less than 1 μm. The ferrite softening can be attributed to continuous recrystallization. Even up to fairly high deformation/coiling temperatures of 983 K (710 °C) the texture consists of typical deformation components. During the continuous recrystallization the amount of high angle grain boundaries can increase up to 70% with a ferrite grain size of 1–3 μm. An increase of the cooling rate up to 20 K/s (ferrite–pearlite–bainite prior to HWD) deteriorates the homogeneity of the cementite distribution and the softening of ferrite in the final microstructure.  相似文献   

17.
The lattice strain tensor evolution for single bulk grains of austenite and ferrite in a duplex stainless steel during tensile loading to 0.02 applied strain has been investigated using in situ high-energy X-ray measurements and finite-element modeling. Single-grain X-ray diffraction lattice strain data for the eight austenite and seven ferrite grains measured show a large variation of residual lattice strains, which evolves upon deformation to the point where some grains with comparable crystallographic orientations have lattice strains different by 1.5 × 10?3, corresponding to a stress of ~300 MPa. The finite-element simulations of the 15 measured grains in three different spatial arrangements confirmed the complex deformation constraint and importance of local grain environment.  相似文献   

18.
Conclusions The shape of cementite particles has a considerable effect on the structure of deformed steel and its mechanical properties. The fine structure of ferrite resulting from plastic deformation of steel with globular cementite is similar to the structure of deformed carbon-free iron. Their dislocation structures are also similar. The shape, size, and internal structure of cementite crystals change little during plastic deformation (up to 50%). The strengthening of steel resulting from deformation is independent of the concentration of carbon and is the same as in carbon-free iron.Plate-like cementite, unlike globular cementite, favors the creation of a more dispersed ferrite substructure as the result of deformation. Also the cementite crystals become plastically deformed, and as a result a fine structure is created within the crystals. Most of the eutectoid grains are broken up during deformation, and as the result the plate-like structure is destroyed. In regions where the plate-like structure is preserved the cementite becomes finer and the distance between the platelets decreases. The finer the structure of the eutectoid before deformation the greater this effect. An increase of the dispersity of the eutectoid favors a more developed fine structure of ferrite and cementite as the result of deformation.Central Scientific Institute of Ferrous Metallurgy Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 2–8, February, 1964  相似文献   

19.
利用Gleeble 1500热模拟试验机进行单轴热压缩实验, 研究了合金元素Al的添加对过共析钢等温球化及温变形过程中渗碳体球化及所得超细(α+θ)复相组织的影响. 结果表明: 等温球化时, Al的添加使过共析钢获得较细小的渗碳体颗粒与较小铁素体晶粒的复相组织; 在温变形过程中, 合金元素Al能够阻碍Fe和C原子的扩散, 减缓片层渗碳体的熔断球化及渗碳体粒子的粗化, 抑制渗碳体粒子在铁素体内部的再析出, 获得超细(α+θ)复相组织.  相似文献   

20.
《Acta Materialia》2008,56(19):5837-5844
Upon gaseous nitrocarburizing, massive cementite layers were grown on ferrite substrates. By means of electron backscatter diffraction, it was shown that the Bagaryatsky orientation relationship holds between the cementite grains of the compound layer and the ferrite grains of the substrate. The experimental data exhibit a preference for specific variants of this orientation relationship: those variants corresponding to relatively low cementite–ferrite misfit-strain energy are favoured. Furthermore, the orientation relationship of neighboring cementite grains grown on the same ferrite grain allows the establishment of low-energy grain boundaries between these cementite grains. In contrast, at ferrite-grain boundaries intersecting the substrate surface, high-energy cementite-grain boundaries occur between cementite grains on adjacent ferrite grains. The latter cementite-grain boundaries promote carbon grain-boundary diffusion through the cementite, which is experimentally supported by the observation of relatively large cementite-layer thicknesses at these locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号